【總結】講練學案部分§空間向量及其加減運算.知識點一空間向量的概念判斷下列命題是否正確,若不正確,請簡述理由.①向量AB與AC是共線向量,則A、B、C、D四點必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2024-12-08 01:49
【總結】§3.空間向量的數乘運算知識點一空間向量的運算已知ABCD—A′B′C′D′是平行六面體.(1)化簡12'23AABCAB??(2)設M是底面ABCD的中心,N是側面BCC′B′對角線BC′上的34分點,設'MNABADAA???
【總結】第三章間向量與立體幾何§空間向量及其運算知識點一空間向量概念的應用給出下列命題:①將空間中所有的單位向量移到同一個點為起點,則它們的終點構成一個圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【總結】1空間向量運算的坐標表示北師大版高中數學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標運算則設),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2024-11-17 15:04
【總結】第一課時空間向量及其加減與數乘運算教學要求:理解空間向量的概念,掌握其表示方法;會用圖形說明空間向量加法、減法、數乘向量及它們的運算律;能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.教學重點:空間向量的加減與數乘運算及運算律.教學難點:由平面向量類比學習空間向量.教學過程:一、復習引入1、有關平面向量的一
2024-11-19 22:43
【總結】拋物線及其標準方程【學習目標】掌握拋物線的定義、標準方程、幾何圖形.【重點難點】拋物線的定義、標準方程、幾何圖形.【學習過程】一、自主預習(預習教材理P64~P67,文P56~P59找出疑惑之處)復習1:函數2261yxx???的圖象是,它的頂點坐標是(),對稱
2024-12-05 06:47
【總結】數量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數量積注:①兩個向量的數量積是數量,而不是向量.②規(guī)定:零向量與任意向量的數量積等于零.a
2024-11-18 12:14
【總結】數乘運算上一節(jié)課,我們把平面向量的有關概念及加減運算擴展到了空間.平面向量空間向量加法減法運算加法:三角形法則或平行四邊形法則減法:三角形法則運算律加法交換律abba???加法結合律:()()ab
【總結】拋物線的簡單幾何性質(1)【學習目標】1.掌握拋物線的幾何性質;2.根據幾何性質確定拋物線的標準方程.【重點難點】拋物線的幾何性質【學習過程】一、自主預習P70,文P60~P61找出疑惑之處)復習1:準線方程為x=2的拋物線的標準方程是.復習2:雙曲線22
【總結】ykiA(x,y,z)Ojxz重慶市萬州分水中學高中數學選修2-1《空間向量的坐標表示》教案備課時間教學課題教時計劃1教學課時1教學目標1.能用坐標表示空間向量,掌握空間向量的坐標運算;2.會根據向量的坐標判斷兩個空間向量平行。重
2024-11-20 00:30
【總結】四種命題及其關系【學習目標】1.能寫出一個命題的逆命題、否命題、逆否命題,會分析四種命題的相互關系.2.會判斷四種命題的真假【重點難點】四種命題及其關系;【學習過程】一、自主預習1.命題的定義用語言、符號或式子表達的,可以叫做命題.注意:(1)命題定義的
2024-11-19 23:27
【總結】全稱量詞與存在量詞【學習目標】了解含有量詞的全稱命題和特稱命題的含義,并能用數學符號表示含有量詞的命題及判斷其命題的真假性.【重點難點】重點:理解全稱量詞與存在量詞的意義難點:全稱命題和特稱命題真假的判定.【學習過程】一、自主學習預習課本21-25頁,完成下列問題1.短語“
2024-11-19 23:26
【總結】雙曲線的簡單幾何性質【學習目標】理解并掌握雙曲線的幾何性質.【重點難點】雙曲線的幾何性質.雙曲線的幾何性質【學習過程】一、自主預習(預習教材理P56~P58,文P49~P51找出疑惑之處)復習1:寫出滿足下列條件的雙曲線的標準方程:①3,4ab??,焦點在x軸上;②焦點在
【總結】雙曲線及其標準方程【學習目標】1.掌握雙曲線的定義;2.掌握雙曲線的標準方程.【重點難點】雙曲線的概念,雙曲線標準方程雙曲線標準方程的推導過程及化簡無理方程的常用的方法【學習過程】一、自主預習(預習教材理P52~P55,文P45~P48找出疑惑之處)復習1:橢圓的定義是什么?橢圓的標準方程
2024-12-06 00:20
【總結】坐標表示1.空間向量的基本定理:2.平面向量的坐標表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標為1212(,),(,)aaabbb??(2)若11221122(,)
2024-11-18 11:25