【總結(jié)】等比數(shù)列第二課時思考:我們知道,等差數(shù)列{an}滿足下列公式(1)an=am+(n-m)d(m、n、p、q∈N*);(2)若m+n=p+q,則am+an=ap+aq那么,等比數(shù)列是否也有類似的公式呢?一、復習:2.通項公式:an=a1qn-1*11(2)(
2024-11-17 19:44
【總結(jié)】等比數(shù)列第一課時1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第4課時等差、等比數(shù)列的應用要點·疑點·考點按復利計算利息的一種儲蓄,本金為a元,每期利率為r,存期為
2024-11-12 16:42
【總結(jié)】第一頁,編輯于星期六:點三十四分。,2.4等比數(shù)列第一課時等比數(shù)列的概念及通項公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四頁,編...
2024-10-22 18:53
【總結(jié)】第一篇:2012高中數(shù)學(第2課時)教案新人教A版必修5 (二)教學目標 (一)知識與技能目標 進一步熟練掌握等比數(shù)列的定義及通項公式; (二)過程與能力目標 利用等比數(shù)列通項公式尋找出...
2024-10-25 14:03
【總結(jié)】A等比數(shù)列等比數(shù)列×國際象棋起源于印度,關于國際象棋有這樣一個傳說,國王要獎勵國際象棋的發(fā)明者,問他有什么要求,發(fā)明者說:“請在棋盤上的第一個格子上放1粒麥子,第二個格子上放2粒麥子,第三個格子上放4粒麥子,第四個格子上放8粒麥子,依次類推,直到第64個格子放滿為止?!眹蹩犊卮饝怂?/span>
2025-08-05 19:27
【總結(jié)】問題探究????。的通項公式試求數(shù)列,)(滿足:已知數(shù)列 探究nnnnnaanaaaa1211111?????????????。的通項公式),試求數(shù)列(已知,且中,:已知數(shù)列 探究nnnnnaaqqaaaa
2025-03-12 14:53
【總結(jié)】等差數(shù)列和等比數(shù)列的應用復習一、課堂練習:?????????8276543aaaaaaaan則,中,若等差數(shù)列.,則,,,,五項分別為:在等比數(shù)列中,有連續(xù)12cbab=a=c=ac=;?
2024-11-09 01:17
【總結(jié)】等比數(shù)列的前n項和貴池中學金華芬小明:在一個月中每天比前一天多給你1萬元小林:我第一天還1分錢,以后每天還的錢是前一天的2倍一、問題探究引入小林:哈哈!這么多錢我可賺大了,我要是定了2個月,3個月那該多好!第1天支出1分錢收入1萬元第2天支出2分錢收入2萬
2025-01-08 00:05
【總結(jié)】1“一尺之棰,日取其半,萬世不竭。”無窮等比數(shù)列各項和的概念無窮等比數(shù)列各項和的概念1證明:無窮等比數(shù)列各項和的概念證明:無窮等比數(shù)列各項和的概念公式:無窮等比數(shù)列各項和的概念無窮等比數(shù)列各項和的應用應用:發(fā)現(xiàn)四:化循環(huán)小數(shù)為分數(shù)的一般方法:
2024-11-12 19:04
【總結(jié)】等比數(shù)列的通項公式(2)陽光國際學校高中部數(shù)學組復習一.等比數(shù)列的定義二.等比數(shù)列的通項公式an=a1qn-1q0時,數(shù)列各項同號q0時,數(shù)列各項正負相間①{an}是等比數(shù)列?=q(q是常數(shù),n∈N*
2024-11-12 16:41
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學課時作業(yè)16等比數(shù)列(第2課時)新人教版必修51.一直角三角形三邊邊長成等比數(shù)列,則()A.三邊邊長之比為3∶4∶5B.三邊邊長之比為3∶3∶1C.較大銳角的正弦為5-12D.較小銳角的正弦為5-12答案D解析不妨設A最小,C為直角,依題意???
2024-11-28 01:20
【總結(jié)】等比數(shù)列(第1課時)學習目標,理解等比數(shù)列的概念.,明確一個數(shù)列是等比數(shù)列的限定條件;能夠運用類比的思想方法得到等比數(shù)列的定義,會推導等比數(shù)列的通項公式.合作學習一、設計問題,創(chuàng)設情境:定義:通項公式:an=a1+(n-1)d,(n∈N*).前n項和公式:Sn==na1+d,(n∈
2024-12-08 07:03
【總結(jié)】等比數(shù)列(第2課時)學習目標靈活應用等比數(shù)列的定義及通項公式;深刻理解等比中項的概念;熟悉等比數(shù)列的有關性質(zhì),并系統(tǒng)了解判斷數(shù)列是否是等比數(shù)列的方法.通過自主探究、合作交流獲得對等比數(shù)列性質(zhì)的認識.充分感受數(shù)列是反映現(xiàn)實生活的模型,體會數(shù)學是來源于現(xiàn)實生活,并應用于現(xiàn)實生活的,數(shù)學是豐富多彩的而不是枯燥無味的,提高學習的興趣.合
2024-12-09 03:42
【總結(jié)】【高考調(diào)研】2021年高中數(shù)學課時作業(yè)15等比數(shù)列(第1課時)新人教版必修51.(2021·江西)等比數(shù)列x,3x+3,6x+6,…的第四項等于()A.-24B.0C.12D.24答案A解析由題意得:(3x+3)2=x(6x+6),解得x=-3或-x