【總結】基本不等式:第1課時基本不等式1.理解并掌握基本不等式及其推導過程,明確基本不等式成立的條件.2.能利用基本不等式求代數(shù)式的最值.121.重要不等式當a,b是任意實數(shù)時,有a2+b2≥2ab,當且僅當a=b時,等號成立.(1)公式中a,b的取值是
2024-11-17 19:03
【總結】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質?;仡櫨毩暋?,求證:最大,均為正數(shù),且,,,:設 練習cbdadcbaadcba????1練習2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
2024-11-17 23:20
【總結】問題探究大。數(shù)比左邊的點表示的數(shù),右邊的點表示的與表示兩個不同的實數(shù)分別與點:在數(shù)軸上不同的點 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點的位置(如圖3-1-1)可以看出a,b之間具有哪些性質。探究2:任意給出兩個實數(shù)a,b你能想到哪些比大
【總結】12不等式的定義:用不等號連接兩個解析式所得的式子,叫做不等式.說明:(1)不等號的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對數(shù)式和三角式等)(3)不等式研究的范圍是實數(shù)集R.3對于任意兩個實數(shù)a、b,在a>b,a=b,a
2024-11-18 12:09
【總結】不等關系與不等式A組基礎鞏固1.已知cb0,下列不等式中必成立的一個是()A.a(chǎn)+cb+dB.a(chǎn)-cb-dC.a(chǎn)dbd解析:∵c-∵ab0,∴a-cb-B.答案:B2
2024-12-08 20:21
【總結】 教學建議 ,是從特殊到一般的認識過程,其中三維形式的柯西不等式是過渡的橋梁,三維形式的柯西不等式可以對比二維形式的柯西不等式來理解和記憶,. ,因此,要從整體結構上認識這個不等式,形成...
2025-04-03 03:38
【總結】 教學建議 ,,但要注意結構形式的變化對數(shù)值的要求. ,柯西不等式中的字母、數(shù)較多,不容易記憶,這就要求認真理解代數(shù)推導過程和向量形式、三角形式的推導過程,從數(shù)與形兩個方面來理解和記憶....
2025-04-03 03:50
【總結】 教學建議 ,能構造的和按數(shù)組中的某種“搭配”的順序被分為三種形式:順序和、反序和、“次序”,兩種較為簡單是“順與反”,而亂序和也就不按“常理”,我們只需記住用特殊例子的方法來說大小關系,...
2025-04-03 03:57
【總結】高中數(shù)學模塊教學選修系列4《不等式選講》專題課例《柯西不等式》主講人:山東師范大學附屬中學史宏偉數(shù)學是智能的一種形式,利用這種形式,我們可以把現(xiàn)象世界中的種種對象,置之于數(shù)量概念的控制之下。
2025-08-05 01:57
【總結】不等式的性質課件不等式的性質(1)世界上所有的事物不等是絕對的,相等是相對的。過去我們已經(jīng)接觸過許多不等式的問題,本章我們將較系統(tǒng)地研究有關不等式的性質、證明、解法和應用.1.判斷兩個實數(shù)大小的充要條件對于任意兩個實數(shù)a、b,在a>b,a=b,a<b三種關系中有且僅有一種成立.判斷兩個實數(shù)大小的充要條件是:
2024-11-17 11:59
【總結】不等關系與不等式教學目標:1.知識與技能:掌握不等式的基本性質,會用不等式的性質證明簡單不等式,掌握比較大小的方法.2.過程與方法:通過解決具體問題,學會依據(jù)具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數(shù)學在生活中的重要作用,培養(yǎng)嚴謹?shù)乃季S習慣.重點:不等式的概念和比
2024-12-09 03:41
【總結】不等關系與不等式(1)教學目標:1.知識與技能:通過具體情景,感受在現(xiàn)實世界和日常生活中存在著大量不等關系,理解不等式(組)的實際背景,掌握不等式的基本性質,會用不等式的性質證明簡單的不等式.2.過程與方法:通過解決具體問題,學會依據(jù)具體問題的實際背景分析問題、解決問題的方法.3.情感、態(tài)度與價值觀:通過解決具體問題,體會數(shù)
【總結】基本不等式A組基礎鞏固1.若x0,y0,且2x+8y=1,則xy有()A.最大值64B.最小值164C.最小值12D.最小值64解析:xy=xy??????2x+8y=2y+8x≥22y·8x=8xy,∴xy≥8,即xy≥64,當且僅當???
2024-12-08 20:20
【總結】不等式的性質不等式不等式的證明不等式的解法應用不等式的性質互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【總結】思考:該結論可推廣到三個正數(shù),四個正數(shù),…,甚至n個正數(shù)嗎?002,,..abababab?????若則等號當且僅當時成立2,,,,,.ababababab?
2025-07-24 07:30