【總結】(1)1、實際問題中的應用.在日常生活、生產和科研中,常常會遇到求函數(shù)的最大(小)值的問題.建立目標函數(shù),然后利用導數(shù)的方法求最值是求解這類問題常見的解題思路.在建立目標函數(shù)時,一定要注意確定函數(shù)的定義域.在實際問題中,有時會遇到函數(shù)在區(qū)間內只有一個點使的情形,如果函數(shù)在這個點
2024-11-18 08:47
【總結】常見函數(shù)的導數(shù)(2)一、復習公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導數(shù)(2)().xxee??(1)()ln(0,1)
2024-11-17 23:31
【總結】?函數(shù)的和、差、積、商的導數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在實際生活中的應用導學案(無答案)蘇教版選修1-1一:學習目標1.學會把實際問題轉化為數(shù)學問題;2.最優(yōu)化問題的求解(利用導數(shù)求最值)。二:課前預習1.回憶求函數(shù)最值的步驟。60cm的鐵絲圍成矩形,長、寬各為多少時矩形的面積最大?
2024-11-20 00:30
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學常見函數(shù)的導數(shù)(1)導學案(無答案)蘇教版選修1-1一、學習目標1.能由導數(shù)的定義三個步驟推導如ykxb??、yc?、yx?、2yx?、1yx?等最簡單函數(shù)的導數(shù)公式。2.熟記冪函數(shù)、指數(shù)對數(shù)函數(shù)、正弦余弦函數(shù)的導數(shù)公式。3.初步會利用導數(shù)公式求簡單函數(shù)的導
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學導數(shù)在實際生活中的應用課后知能檢測蘇教版選修1-1一、填空題1.已知某生產廠家的年利潤y(單位:萬元)與年產量x(單位:萬件)的函數(shù)關系式為y=-13x3+81x-234,則使該生產廠家獲取最大年利潤的年產量為________.【解析】y′=-x2+
2024-12-04 18:01
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學常見函數(shù)的導數(shù)課后知能檢測蘇教版選修1-1一、填空題1.已知f(x)=1x3,則f′(1)=________.【解析】∵f(x)=1x3=x-3,∴f′(x)=-3x-4,∴f′(1)=-3×1-4=-3.【答案】
2024-12-04 20:01
【總結】導數(shù)在研究函數(shù)中的應用單元測試一、選擇題1.下列函數(shù)在()??,∞∞內為單調函數(shù)的是()A.2yxx??B.yx?C.xye??D.sinyx?答案:C2.函數(shù)lnyxx?在區(qū)間(01),上是()A.單調增函數(shù)B.單調減函數(shù)C.在10e
2024-12-02 10:14
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應用(最大值與最小值)導學案(無答案)蘇教版選修1-1【學習目標】1、使學生掌握可導函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲担?、使學生掌握用導數(shù)求函數(shù)的最大值與最小值的方法【課前預習】
【總結】函數(shù)的極值與導數(shù)aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0,那么函數(shù)y=f(x)在為這個區(qū)間內的增函數(shù);如果在這個區(qū)
2024-11-18 12:08
【總結】2020/12/2511)如果在某區(qū)間上f′(x)0,那么f(x)為該區(qū)間上的增函數(shù),2)如果在某區(qū)間上f′(x)0,那么f(x)為該區(qū)間上的減函數(shù)。一般地,設函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導數(shù)與函數(shù)的單調性的關系
2024-11-18 08:46
【總結】導數(shù)在實際生活中的應用一、填空題1.一點沿直線運動,如果由始點起經(jīng)過t秒后的距離為s=14t4-53t3+2t2,那么速度為零的時刻是________.2.某公司生產一種產品,固定成本為20210元,每生產一單位的產品,成本增加100元,若總收入R與年產量x的關系是R(x)=?????-x3900+400x,
2024-12-05 03:04
【總結】導數(shù)在研究函數(shù)中的應用(2)孫學軍aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0復習:函數(shù)單調性與導數(shù)關系如果在某個區(qū)間內恒有,則為常數(shù).0)(??xf)(xf設函數(shù)y=f(x)在
2024-11-18 15:25
【總結】第三章導數(shù)及其應用第12課時導數(shù)在研究函數(shù)中的應用教學目標:;能利用導數(shù)研究函數(shù)的單調性,會求函數(shù)的單調區(qū)間;、極小值;會用導數(shù)求函數(shù)的極大值、極小值;、最小值.教學重點:導數(shù)在研究函數(shù)中的應用教學難點:導數(shù)在研究函數(shù)中的應用教學過程:Ⅰ.回顧復習Ⅱ.基本訓練
2024-11-19 17:30
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學常見函數(shù)的導數(shù)(2)導學案(無答案)蘇教版選修1-1一、學習目標1.熟記常見的基本初等函數(shù)的求導公式。2.熟練掌握求簡單函數(shù)的導數(shù)的兩種方法:定義法、公式法。3.理解導數(shù)的幾何意義,并掌握曲線的切線問題的處理的基本路徑。二、課前預習1.列出你所知的求導公式。