【總結(jié)】x2-y2=4的焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線交于A,B兩點(diǎn),則AB的長為()A.2B.4C.8D.42解析:選x2-y2=4的焦點(diǎn)為(±22,0),把x=22代入并解得y=±2,∴|AB|=2-(-2)=4.2.(2
2024-12-05 06:41
【總結(jié)】2020/12/242020/12/24復(fù)習(xí)回顧平面內(nèi),動(dòng)點(diǎn)p到兩個(gè)定點(diǎn)F1F2的距離和是常數(shù),p形成的軌跡?12122PFPFaFF???12122PFPFaFF???12122PFPFaFF???無軌跡.軌跡為線段軌跡為橢圓2020/12/24
2024-11-17 11:59
【總結(jié)】一、選擇題1.在曲線y=x2+1的圖象上取一點(diǎn)(1,2)及鄰近一點(diǎn)(1+Δx,2+Δy),則yx??為()x+x?1+2x-x?1-2x+2+Δx-x?1'3(),(1)fxxf???()A.0B.13?
2024-11-30 14:39
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修2-2《數(shù)學(xué)歸納法》教學(xué)目標(biāo)?了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題。?教學(xué)重點(diǎn):?了解數(shù)學(xué)歸納法的原理第一課時(shí)一、歸納法對(duì)于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法。歸納法{
2024-11-17 17:34
【總結(jié)】§雙曲線及其標(biāo)準(zhǔn)方程【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.從具體情境中抽象出雙曲線的模型2.理解雙曲線的定義;3.掌握雙曲線的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解雙曲線的定義【難點(diǎn)】掌握雙曲線的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)(一)復(fù)
2024-11-28 23:00
【總結(jié)】曲線和方程學(xué)習(xí)目標(biāo):1、了解平面直角坐標(biāo)中“曲線的方程”和“方程的曲線”含義.2、會(huì)判定一個(gè)點(diǎn)是否在已知曲線上.一、知識(shí)回顧并引題:二、自學(xué)課本7573?P并記下重點(diǎn),積極思考問題:三、自我檢測(cè):1、到兩坐標(biāo)軸距離相等的點(diǎn)組成的直線方程是0??yx嗎?2、已
2024-11-30 14:35
【總結(jié)】雙曲線的標(biāo)準(zhǔn)方程課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能1.了解雙曲線的標(biāo)準(zhǔn)方程的推導(dǎo)過程,能根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.2.掌握雙曲線兩種標(biāo)準(zhǔn)方程的形式過程與方法情感態(tài)度與價(jià)值觀教學(xué)重難點(diǎn)根據(jù)已知條件求雙曲線的標(biāo)準(zhǔn)方程.橢圓和雙曲線
2024-12-05 09:30
【總結(jié)】的簡單幾何性質(zhì)(2)蓬萊一中于洪璽判斷直線與雙曲線位置關(guān)系的操作程序把直線方程代入雙曲線方程得到一元一次方程得到一元二次方程直線與雙曲線的漸進(jìn)線平行相交(一個(gè)交點(diǎn))計(jì)算判別式0=00相交相切相離復(fù)習(xí):一、直線與拋物線位置關(guān)系種類
2024-11-18 12:14
【總結(jié)】第三章間向量與立體幾何§空間向量及其運(yùn)算知識(shí)點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【總結(jié)】雙曲線的簡單幾何性質(zhì)(一)復(fù)習(xí)回顧(1)雙曲線的標(biāo)準(zhǔn)方程.xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)探究一.)(幾何性質(zhì)的,分析雙曲線0012222????babyax(1)范圍(2)對(duì)稱性x≥a,或x≤-a在標(biāo)準(zhǔn)方
2024-11-18 01:22
【總結(jié)】雙曲線的簡單幾何性質(zhì)(二)取值范圍。的,求率為一象限的那條漸近線斜,設(shè)該雙曲線過第,的離心率,已知雙曲線kkebabyax]22[)00(2222?????的方程,求直線若兩點(diǎn),于交的直線與斜率為雙曲線Lyx4|AB|.BAL212322???.22的取
2024-11-18 15:25
【總結(jié)】§雙曲線的簡單性質(zhì)設(shè)計(jì)人:趙軍偉審定:數(shù)學(xué)備課組【學(xué)習(xí)目標(biāo)】:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).、對(duì)稱性及對(duì)稱軸,對(duì)稱中心、離心率、頂點(diǎn)、漸近線的概念;、會(huì)用雙曲線的定義解決實(shí)際問題;通過例題和探究了解雙曲線的第二定義,準(zhǔn)線及焦半徑的概念..【學(xué)習(xí)重點(diǎn)】
2024-11-18 18:59
【總結(jié)】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡單的立體幾何中的問題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類比學(xué)習(xí)空間向量.教學(xué)過程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2024-11-19 22:43
【總結(jié)】10xy-110xy-11-221【學(xué)習(xí)目標(biāo)】,領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念及其關(guān)系新疆學(xué)案王新敞、函數(shù)與方程、化歸與轉(zhuǎn)化等數(shù)學(xué)思想,以及坐標(biāo)法、待定系數(shù)法等常用的數(shù)學(xué)方法新疆學(xué)案王新敞【自主學(xué)習(xí)】請(qǐng)回答如下問題:在直角坐標(biāo)系中、三象限的角平分線的方程為:
2024-11-19 23:25
【總結(jié)】圓錐曲線與方程§MQF2PO1O2VF1古希臘數(shù)學(xué)家Dandelin在圓錐截面的兩側(cè)分別放置一球,使它們都與截面相切(切點(diǎn)分別為F1,F(xiàn)2),又分別與圓錐面的側(cè)面相切(兩球與側(cè)面的公共點(diǎn)分別構(gòu)成圓O1和圓O2).過M點(diǎn)作圓錐面的一條母線分別交圓O1,圓O2與
2024-11-17 23:31