【總結(jié)】:①設(shè)圓C1∶x2+y2+D1x+E1y+F1=0和圓C2∶x2+y2+D2x+E2y+F2=0.若兩圓相交,則過交點(diǎn)的圓系方程為x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ為參數(shù),圓系中不包括圓C2,λ=-1為兩圓的公共弦所在直線方程).若兩圓相切呢?:②
2025-06-05 23:39
【總結(jié)】惠東高級(jí)中學(xué)楊奕香教材分析一.教法與學(xué)法三.教學(xué)程序四.二.學(xué)情分析板書設(shè)計(jì)五.六.評(píng)價(jià)分析教材分析教材的地位和作用教學(xué)目標(biāo)教學(xué)重點(diǎn)和難點(diǎn)函數(shù)是高中數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個(gè)高中數(shù)學(xué)之中。本節(jié)課是在把指
2024-11-17 05:39
【總結(jié)】第2課時(shí)(一)導(dǎo)入新課思路,接到氣象臺(tái)的臺(tái)風(fēng)預(yù)報(bào):臺(tái)風(fēng)中心位于輪船正西70km處,受影響的范圍是半徑長(zhǎng)為30km的圓形區(qū)域.已知港口位于臺(tái)風(fēng)中心正北40km處,如果這艘輪船不改變航線,那么它是否會(huì)受到臺(tái)風(fēng)的影響?圖2分析:如圖2,以臺(tái)風(fēng)中心為原點(diǎn)O,以東西方向?yàn)閤軸,建立直角坐標(biāo)系,其中,取1
2024-12-03 04:57
【總結(jié)】ArxyO圓的標(biāo)準(zhǔn)方程醒民高中數(shù)學(xué)組孫鵬飛趙州橋,建于隋煬帝大業(yè)年間(595-605年),至今已有1400年的歷史,出自著名匠師李春之手,是今天世界上最古老的單肩石拱橋,是世界造橋史上的一個(gè)創(chuàng)造。我們?cè)谇懊鎸W(xué)過,在平面直角坐標(biāo)系中,兩點(diǎn)確定一條直線,一點(diǎn)和傾斜角也能確定一條直線.在平面直角
2024-11-17 12:03
【總結(jié)】空間中直線與直線的位置關(guān)系教材研讀A.研讀教材P44-P451.空間兩直線有怎樣的位置關(guān)系?2.完成P44觀察及P45探究部分,體會(huì)直線位置關(guān)系B.研讀教材P45-P471.P45平行公理及其作用B.研讀教材P45-P472.P46等角定理及其作用B.研讀教材P45-P473.
2025-03-12 14:29
【總結(jié)】:)(047)1()12(:,25)2()1(:.122RmmymxmlyxC???????????直線已知圓練習(xí);)1(相交與圓證明直線Cl.,)2(的方程直線截得的弦長(zhǎng)最小時(shí)被圓求直線lCl題型三、最長(zhǎng)弦、最短弦問題222430102.xyxyxy例1、圓上到直線的距離為的點(diǎn)共
2025-06-06 00:28
【總結(jié)】§4.2直線、圓的位置關(guān)系直線與圓的位置關(guān)系【課時(shí)目標(biāo)】1.能根據(jù)給定直線和圓的方程,判斷直線和圓的位置關(guān)系.2.能根據(jù)直線與圓的位置關(guān)系解決有關(guān)問題.直線Ax+By+C=0與圓(x-a)2+(y-b)2=r2的位置關(guān)系及判斷位置關(guān)系相交相切相離公共點(diǎn)個(gè)數(shù)____個(gè)____
2024-12-05 06:42
【總結(jié)】云南省曲靖市麒麟?yún)^(qū)第七中學(xué)高中數(shù)學(xué)空間直線與直線的位置關(guān)系學(xué)案新人教A版必修2【學(xué)習(xí)目標(biāo)】熟練掌握直線異面的定義理解掌握空間兩直線的位置關(guān)系熟練掌握平行公理4,并會(huì)簡(jiǎn)單應(yīng)用【學(xué)習(xí)重點(diǎn)】學(xué)習(xí)重點(diǎn):理解掌握空間兩直線的位置關(guān)系學(xué)習(xí)難點(diǎn):掌握直線異面的定義【問題呈現(xiàn)】如果在黑板上任意畫兩條直線,它們
2024-12-05 06:43
【總結(jié)】圓與圓的位置關(guān)系直線與圓的方程的應(yīng)用一、選擇題1.已知0<r<2+1,則兩圓x2+y2=r2與(x-1)2+(y+1)2=2的位置關(guān)系是()A.外切B.相交C.外離D.內(nèi)含解析:選B設(shè)圓(x-1)2+(y+1)2=2的圓心為O′,則O′(1,-1).圓x2+y2
2024-12-08 02:39
【總結(jié)】直線與圓的方程的應(yīng)用課題直線與圓的方程的應(yīng)用課型新授課學(xué)習(xí)目標(biāo)1.理解直線與圓的位置關(guān)系的集中性質(zhì)。2.利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;用坐標(biāo)法解決幾何問題的步驟;第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;
【總結(jié)】第1課時(shí)直線與圓的位置關(guān)系一、選擇題1.若直線ax+by=1與圓C:x2+y2=1相交,則點(diǎn)P(a,b)與圓C的位置關(guān)系是()A.P在圓內(nèi)B.P在圓外C.P在圓上D.不確定解析:選B∵直線ax+by=1與圓x2+y2=1相交,∴圓心到直線的距離d=1a2+b2<
2024-12-08 07:03
【總結(jié)】知識(shí)回顧1.圓的標(biāo)準(zhǔn)方程;2.圓的一般方程;3.點(diǎn)P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關(guān)系判斷;4.直線Ax+By+C=0與圓(x-a)2+(y–b)2=r2的位置關(guān)系。問題探究請(qǐng)求出公共弦長(zhǎng)。的位置關(guān)系,若相交,與圓
2024-11-17 03:40
【總結(jié)】第二課時(shí)平面與平面垂直平面與平面垂直的判定問題提出別是什么含義?二面角的平面角有哪幾個(gè)基本特征?(1)頂點(diǎn)在棱上;(2)邊在兩個(gè)面內(nèi);(3)邊垂直于棱.,直線與平面可以垂直,平面與平面是否存在垂直關(guān)系?如何認(rèn)識(shí)兩個(gè)平面垂直?我們從理論上作些探討.知識(shí)探究(一):兩個(gè)平面垂直的概念
【總結(jié)】Oxy一艘輪船在沿直線返回港口的途中,接到氣象臺(tái)的臺(tái)風(fēng)預(yù)報(bào):臺(tái)風(fēng)中心位于輪船正西70km處,受影響的范圍是半徑長(zhǎng)為30km的圓形區(qū)域.已知港口位于臺(tái)風(fēng)中心正北40km處,如果這艘輪船不改變航線,那么它是否會(huì)受到臺(tái)風(fēng)的影響?為解決這個(gè)問題,我們以臺(tái)風(fēng)中心為原點(diǎn)O,東西方向?yàn)閤軸,建立如圖所示的直角坐標(biāo)系,其中
2025-06-06 00:10
【總結(jié)】解析幾何點(diǎn)到直線距離公式xyP0(x0,y0)O:0lAxByC???SR0022||AxByCdAB????Qd注意:化為一般式.圓的標(biāo)準(zhǔn)方程圓的定義平面內(nèi)到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。定點(diǎn)定長(zhǎng)圓心
2024-11-17 19:45