【總結】知識回顧1.直線的傾斜角的定義;2.直線的斜率公式;3.若兩直線l1:k1x+b1,l2:y=k2x+b2;則l1//l2,l1⊥l2及l(fā)1與l2重合的條件是什么?4.解析幾何中涉及直線的斜率應注意什么問題?問題探究探究1:(1)如圖,直徑l經(jīng)過點P0(x0,y0),
2024-11-17 03:40
【總結】教材研讀研讀教材P134-P1351.空間直角坐標系及其相關概念;2.如何在空間直角坐標系中確定點的位置?3.教材P135例1、例2起到了哪些作用?4.上訴兩例題在研究空間坐標系中點的位置時有哪些不足?你如何改進?的坐標;,求交于與)若 ?。ǖ淖鴺?;)求點 ?。ò胼S上。軸的正軸,分別在,為坐標原點,頂點
2024-11-17 03:39
【總結】知識回顧1.圓的標準方程;2.圓的一般方程;3.點P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關系判斷;4.直線Ax+By+C=0與圓(x-a)2+(y–b)2=r2的位置關系。問題探究請求出公共弦長。的位置關系,若相交,與圓
【總結】平面A.研讀教材P40-P41:1.平面的概念;2.平面的畫法;3.平面的命名。1.為何教材描述幾何中點、直線、平面之間的位置關系采用了集合的相關符號“屬于”或“包含”?2.點與直線的位置關系及其表示;3.點與平面的位置關系及其表示;4.直線與平面的位置關系及其表示;5.
2025-03-12 14:29
【總結】問題探究探究1:已知平面上兩點P1(-1,2),P2(2,)求P1,P2的距離|P1P2|?7探究2:已知平面上兩點P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|?探究3:通過上訴探究,請問研究兩點距離你有幾種常用的分析策略?探究4:通已知A(-1,2)
2024-11-18 01:47
【總結】知識回顧1.圓的標準方程;2.圓的一般方程;3.點P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關系判斷。問題探究標。,請求其坐的位置關系,若有交點與圓試判斷直線,:,圓:?。┲本€(,請求其坐標。的位置關系,若有交點與圓判斷直線,試:,圓:?。┲本€(請求其坐標。,的位
【總結】指數(shù)與指數(shù)冪的運算班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】廢鐵之所以能成為有用的鋼材,是因為它經(jīng)得起痛苦的磨練。愿你是永遠奔騰的千里馬。【學習目標】1.理解次方根的定義及性質.2.理解根式的概念、性質,并能利用根式
2024-11-28 00:22
【總結】撰稿教師:李麗麗自學目標1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學會求向量的模長;3.注意向量的特點:可以平行移動學習重、難點:1.向量、相等向量、共線向量的概念;2.向量的幾何表示學習過程一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學(一)問題探
2024-11-27 23:47
【總結】簡單隨機抽樣的特點:1、要求被抽取的樣本的總體的個體個數(shù)有限,這樣便于對其中各個個體被抽取的概率進行分析.2、是從總體中逐個地進行抽取,這樣便于在實踐中進行操作.3、是一種不放回抽樣.4、是一種等可能抽樣.5、此種方法簡便易行.當總體的個體不多時,適宜采用此種方法.不僅每次從總體中抽取一個個體時,各個
2025-01-18 02:29
【總結】知識回顧1.圓的標準方程;2.點與圓的位置關系及其判斷。問題探究跡。的軌跡方程并判斷其軌,求點的距離之比為,,,與兩個定點:已知點 探究MAOM21)03()00(1圖形?表示什么)方程( 表示什么圖形?)方程:( 探究064220142122222??????????
【總結】知識回顧1.點P0(x0,y0)到直線l:Ax+By+C=0的距離公式;2.已知l1:y=k1x+b1,l2:y=k2x+b2,判斷l(xiāng)1與l2的位置關系;3.已知l1:A1x+B1y+C1=0,l2:A2x+B2y+C2
【總結】研讀教材P23思考部分1.球的體積與表面積公式;2.完成P27例4的證明,體會公式的運用;“圓柱的底面直徑與高都等于球的直徑,求證:(1)球的體積等于圓柱體積的;(2)球的表面積等于圓柱的側面積?!?23.自我檢測:P28練習T1,T2。比值為的與,則線段的表面積的比值為面積與球的⊙的
2024-11-17 03:41
【總結】知識回顧直線的不同方程及適用范圍問題探究探究1:求下列直線的斜率以及與y軸的截距:---=--=--yxxy1451yx13312113(1)1=2(3);(2);()探究2:(1)平面直角坐標系中的每一條直線都可以用一個關于x,
【總結】知識回顧1.直線的點斜式、斜截式方程及其適用范圍;2.若直線l1:y=k1x+b1,l2:y=k2x+b2;則l1//l2,l1⊥l2及l(fā)1與l2重合、相交的條件是什么?問題探究探究1:若直線l與x軸的截距為3,與y軸的截距為-4,求直線l的方
【總結】綜合檢測二一、選擇題1.設集合A={x|2≤x<4},B={x|3x-7≥8-2x},則A∪B等于()A.{x|3≤x<4}B.{x|x≥3}C.{x|x>2}D.{x|x≥2}2.若函數(shù)f(x)=?????x2+1,x≤1,lgx,
2024-11-28 00:02