【總結(jié)】§平面向量數(shù)量積的運算律(課前預習案)班級:___姓名:________編寫:一、新知導學1.交換律:a?b=;2.數(shù)乘結(jié)合律:(?a)?b==;3.分配律:(a+b)?c=.說明
2024-11-27 23:43
【總結(jié)】§正弦函數(shù)的性質(zhì)(課前預習案)班級:___姓名:________編寫:一、新知導學1.請根據(jù)正弦函數(shù)圖象sinyx?的定義域是______;值域是______;當x?______________時,maxy?____;當x=________________時,miny?
2024-11-18 16:46
【總結(jié)】平面向量基本定理一.學習要點:向量基本定理及其簡單應用二.學習過程:(一)復習:1向量的加法運算;2向量共線定理;(二)新課學習:1.平面向量基本定理:如果1e,2e是同一平面內(nèi)的兩個向量,那么對于這一平面內(nèi)的任一向量a,
2024-11-27 23:46
【總結(jié)】誘導公式(二)崔文一、學習目標1.掌握誘導公式四、五的推導,并能應用解決簡單的求值、化簡與證明問題.2.對誘導公式一至五,能作綜合歸納,體會出五組公式的共性與個性,培養(yǎng)由特殊到一般的數(shù)學推理意識和能力.3.繼續(xù)體會知識的“發(fā)生”、“發(fā)現(xiàn)”過程,培養(yǎng)研究問題、發(fā)現(xiàn)問題、解決問題的能力.二、學習指導五組誘導公式可以概括為一
【總結(jié)】2.3.2向量數(shù)量積的運算律一、學習要點:向量數(shù)量積的運算律及其簡單運用二、學習過程:一.復習回顧:平面向量數(shù)量積的定義及其幾何意義、性質(zhì):二.新課學習::(1)(2)(3)
2024-11-18 16:44
【總結(jié)】§(課前預習案)班級:___姓名:________編寫:一、新知導學sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
2024-11-27 23:35
【總結(jié)】撰稿教師:李麗麗學習目標1、理解平面向量的正交分解。聯(lián)系直角坐標系,研究向量正交分解的坐標運算。2、會用坐標表示平面向量的加法、減與數(shù)乘運算。學習過程一、課前準備(預習教材99頁~102頁,找出疑惑之處)二、新課導學(一)向量的正交分解1、如果兩個向量的基線互相垂直,則稱這兩個向量,
【總結(jié)】數(shù)列(二)自主學習知識梳理1.數(shù)列可以看作是一個定義域為____________(或它的有限子集{1,2,3,…,n})的函數(shù),當自變量按照從小到大的順序依次取值時,對應的一列________.2.一般地,一個數(shù)列{an},如果從________起,每一項都大于它的前一項,即____________,
2024-11-19 23:20
【總結(jié)】自學目標1、在理解向量共線的概念的基礎(chǔ)上,學習用坐標表示向量共線的條件。2、利用向量共線的坐標表示解決有關(guān)問題。學習過程一、課前準備(預習教材103頁~104頁,找出疑惑之處)二、新課導學1、若//(0)abb?則存在唯一實數(shù)?使;反之,若存在唯一實數(shù)?,使,則//
【總結(jié)】函數(shù)的概念班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】假如你曾有過虛度的時光,請不要以嘆息作為補償;明天的路途畢竟長于逝去的歲月??爝~步,前面相迎的是幸福的曙光!【學習目標】1.通過實例,體會函數(shù)是描繪變量之間對應關(guān)系的重要數(shù)學模型
2024-11-28 00:25
【總結(jié)】2.1.5向量共線條件與軸上向量坐標運算一、學習要點:單位向量、軸上向量坐標運算、共線定理應用二、學習過程:(一)復習引入:1.向量的表示方法2.向量的加法,減法及運算律3.實數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個非零向量a,與a同方向且長度等于的單位向量叫
【總結(jié)】誘導公式一.學習要點:誘導公式及其簡單應用二.學習過程:一、復習:誘導公式一:二、講解新課:公式二:公式三:公式四:公
【總結(jié)】3.2.2半角公式一。學習要點:半角公式及其簡單應用。二。學習過程:復習:升冪公式:降冪公式:新課學習:1.半角公式2.萬能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2024-11-18 16:43
【總結(jié)】一、自學目標:1、理解半角公式的推導過程2、會運用半角公式進行相關(guān)的運算。二、自學過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導方法是2?S與2?C兩
【總結(jié)】指數(shù)與指數(shù)冪的運算班級:__________姓名:__________設計人__________日期__________課前預習·預習案【溫馨寄語】廢鐵之所以能成為有用的鋼材,是因為它經(jīng)得起痛苦的磨練。愿你是永遠奔騰的千里馬?!緦W習目標】1.理解次方根的定義及性質(zhì).2.理解根式的概念、性質(zhì),并能利用根式
2024-11-28 00:22