【總結(jié)】2.3.2向量數(shù)量積的運(yùn)算律一、學(xué)習(xí)要點(diǎn):向量數(shù)量積的運(yùn)算律及其簡(jiǎn)單運(yùn)用二、學(xué)習(xí)過(guò)程:一.復(fù)習(xí)回顧:平面向量數(shù)量積的定義及其幾何意義、性質(zhì):二.新課學(xué)習(xí)::(1)(2)(3)
2024-11-18 16:44
【總結(jié)】教學(xué)設(shè)計(jì)一、課前延伸預(yù)習(xí)檢測(cè):判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線向量則A、B、C、D四點(diǎn)必在一條直線上。()(3)若干個(gè)向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
【總結(jié)】第二章一、選擇題1.已知數(shù)軸上A點(diǎn)坐標(biāo)為-5,AB=-7,則B點(diǎn)坐標(biāo)是()A.-2B.2C.12D.-12[答案]D[解析]∵xA=-5,AB=-7,∴xB-xA=-7,∴xB=-12.2.設(shè)a與b是兩個(gè)不共線的向量,且向量a+λb與-(b
2024-11-27 23:46
【總結(jié)】§平面向量數(shù)量積的運(yùn)算律(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1.交換律:a?b=;2.?dāng)?shù)乘結(jié)合律:(?a)?b==;3.分配律:(a+b)?c=.說(shuō)明
2024-11-27 23:43
【總結(jié)】 《平面向量正交分解及坐標(biāo)表示》導(dǎo)學(xué)案 【學(xué)習(xí)目標(biāo)】 (1)理解平面向量的坐標(biāo)的概念; (2)掌握平面向量的坐標(biāo)運(yùn)算; (3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線. 【重點(diǎn)難點(diǎn)】 教學(xué)重點(diǎn)...
2025-04-03 01:19
【總結(jié)】2.1.5向量共線條件與軸上向量坐標(biāo)運(yùn)算一、學(xué)習(xí)要點(diǎn):?jiǎn)挝幌蛄?、軸上向量坐標(biāo)運(yùn)算、共線定理應(yīng)用二、學(xué)習(xí)過(guò)程:(一)復(fù)習(xí)引入:1.向量的表示方法2.向量的加法,減法及運(yùn)算律3.實(shí)數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個(gè)非零向量a,與a同方向且長(zhǎng)度等于的單位向量叫
【總結(jié)】課題向量共線的條件課型新授課時(shí)1時(shí)間第4周主備人教研組長(zhǎng)包組領(lǐng)導(dǎo)編號(hào)教學(xué)目標(biāo)、單位向量、軸上的坐標(biāo)公式、數(shù)軸上的兩點(diǎn)間的距離公式;;教學(xué)內(nèi)容教學(xué)設(shè)計(jì)課前預(yù)習(xí)案知識(shí)鏈接:1.若有向量a?(a??0)、b?,實(shí)數(shù)λ,使b?=λ
【總結(jié)】§向量在幾何中的應(yīng)用(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1.兩個(gè)向量的數(shù)量積:2.平面兩向量數(shù)量積的坐標(biāo)表示:3.向量平
2024-11-19 06:26
【總結(jié)】空間向量的正交分解及其坐標(biāo)表示【學(xué)習(xí)目標(biāo)】⒈了解空間向量基本定理及其推論;⒉理解空間向量的基底、基向量的概念.理解空間任一向量可用空間不共面的三個(gè)已知向量唯一線性表示奎屯王新敞新疆【自主學(xué)習(xí)】空間向量基本定理與平面向量基本定理類似,區(qū)別僅在于基底中多了一個(gè)向量,從而分解結(jié)果中多了一“項(xiàng)”.證明的思路、步驟也基本相同.我們
2024-12-05 06:40
【總結(jié)】2.1.4數(shù)乘向量一.學(xué)習(xí)要點(diǎn):數(shù)乘向量、向量共線和三點(diǎn)共線的判斷。二.學(xué)習(xí)過(guò)程:一、復(fù)習(xí)引入:1、向量的加法:2、向量的減法:二、講解新課:1、實(shí)數(shù)與向量的積引例1:已知非零向量a,作出aaa??和)()(aa???。探究:相同向量相加后,和的長(zhǎng)度與方向有什么變化?定義:實(shí)數(shù)λ與向量a的積是
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問(wèn)題學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材96頁(yè)~98頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個(gè)不共線的向量來(lái)表示。如圖,設(shè)2
【總結(jié)】課題:向量的減法班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量減法的含義;2、能用三角形法則和平行四邊形法則求出兩向量的差;【課前預(yù)習(xí)】1、如何用向量加法的三角形法則和平行四邊形法則作兩向量的和?2、??ABOA;???CA
2024-11-20 01:05
【總結(jié)】第二章一、選擇題1.已知a=(-2,-3)、b=(32,-1),則向量a與b的夾角為()A.π6B.π4C.π3D.π2[答案]D[解析]由a·b=-2×32+(-3)×(-1)=0,∴a⊥b.2.(2021·河
【總結(jié)】學(xué)習(xí)目標(biāo)3.用向量證明平面幾何、解析幾何問(wèn)題的步驟。4.體會(huì)向量在解決問(wèn)題中的應(yīng)用,培養(yǎng)運(yùn)算及解決問(wèn)題的能力。學(xué)習(xí)過(guò)程一、課前準(zhǔn)備(預(yù)習(xí)教材117頁(yè)~122頁(yè),找出疑惑之處)二、新課導(dǎo)學(xué)用例,已知平行四邊形ABCD、E、E在對(duì)角線BD上,并且=BEFD.求證:AECF是平行四邊形
【總結(jié)】平面向量基本定理一.學(xué)習(xí)要點(diǎn):向量基本定理及其簡(jiǎn)單應(yīng)用二.學(xué)習(xí)過(guò)程:(一)復(fù)習(xí):1向量的加法運(yùn)算;2向量共線定理;(二)新課學(xué)習(xí):1.平面向量基本定理:如果1e,2e是同一平面內(nèi)的兩個(gè)向量,那么對(duì)于這一平面內(nèi)的任一向量a,