【總結】誘導公式(一)崔文一、學習目標:1.了解三角函數(shù)的誘導公式的意義和作用.2.理解誘導公式的推導過程.3.能運用有關誘導公式解決一些三角函數(shù)的求值、化簡和證明問題.二、重點與難點:重點:誘導公式的記憶、理解、運用。難點:誘導公式的推導、記憶及符號的判斷;三、自學檢測誘導公式一~三(1)公式一:s
2024-11-27 23:50
【總結】§平面向量數(shù)量積的運算律(課前預習案)班級:___姓名:________編寫:一、新知導學1.交換律:a?b=;2.數(shù)乘結合律:(?a)?b==;3.分配律:(a+b)?c=.說明
2024-11-27 23:43
【總結】§正弦函數(shù)的性質(課前預習案)班級:___姓名:________編寫:一、新知導學1.請根據(jù)正弦函數(shù)圖象sinyx?的定義域是______;值域是______;當x?______________時,maxy?____;當x=________________時,miny?
2024-11-18 16:46
【總結】平面向量基本定理一.學習要點:向量基本定理及其簡單應用二.學習過程:(一)復習:1向量的加法運算;2向量共線定理;(二)新課學習:1.平面向量基本定理:如果1e,2e是同一平面內的兩個向量,那么對于這一平面內的任一向量a,
2024-11-27 23:46
【總結】誘導公式(二)崔文一、學習目標1.掌握誘導公式四、五的推導,并能應用解決簡單的求值、化簡與證明問題.2.對誘導公式一至五,能作綜合歸納,體會出五組公式的共性與個性,培養(yǎng)由特殊到一般的數(shù)學推理意識和能力.3.繼續(xù)體會知識的“發(fā)生”、“發(fā)現(xiàn)”過程,培養(yǎng)研究問題、發(fā)現(xiàn)問題、解決問題的能力.二、學習指導五組誘導公式可以概括為一
【總結】2.3.2向量數(shù)量積的運算律一、學習要點:向量數(shù)量積的運算律及其簡單運用二、學習過程:一.復習回顧:平面向量數(shù)量積的定義及其幾何意義、性質:二.新課學習::(1)(2)(3)
2024-11-18 16:44
【總結】§(課前預習案)班級:___姓名:________編寫:一、新知導學sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
2024-11-27 23:35
【總結】撰稿教師:李麗麗學習目標1、理解平面向量的正交分解。聯(lián)系直角坐標系,研究向量正交分解的坐標運算。2、會用坐標表示平面向量的加法、減與數(shù)乘運算。學習過程一、課前準備(預習教材99頁~102頁,找出疑惑之處)二、新課導學(一)向量的正交分解1、如果兩個向量的基線互相垂直,則稱這兩個向量,
【總結】弧度制(1)學習要點:弧度制以及角度制與之換算關系。學習過程:(一)復習:度量角的大小第一種單位制—角度制的定義。(二)新課學習:1.1弧度角的定義:長度等于的弧所對的圓心角稱為的角。如圖:?AOB=1rad
【總結】自學目標1、在理解向量共線的概念的基礎上,學習用坐標表示向量共線的條件。2、利用向量共線的坐標表示解決有關問題。學習過程一、課前準備(預習教材103頁~104頁,找出疑惑之處)二、新課導學1、若//(0)abb?則存在唯一實數(shù)?使;反之,若存在唯一實數(shù)?,使,則//
【總結】§角的概念的推廣(課前預習案)班級:__姓名:__編寫:一、新知導學:在平面內,角可以看做是一條射線繞著它的端點旋轉而成的圖形.旋轉起始時的射線叫做角的,終止時的射線叫做角的,射線的端點叫做角的.按逆時針方向旋轉所得到的角為,而按順時針方向旋轉所得到的角為
【總結】2.1.5向量共線條件與軸上向量坐標運算一、學習要點:單位向量、軸上向量坐標運算、共線定理應用二、學習過程:(一)復習引入:1.向量的表示方法2.向量的加法,減法及運算律3.實數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個非零向量a,與a同方向且長度等于的單位向量叫
【總結】誘導公式一.學習要點:誘導公式及其簡單應用二.學習過程:一、復習:誘導公式一:二、講解新課:公式二:公式三:公式四:公
【總結】3.2.2半角公式一。學習要點:半角公式及其簡單應用。二。學習過程:復習:升冪公式:降冪公式:新課學習:1.半角公式2.萬能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2024-11-18 16:43
【總結】一、自學目標:1、理解半角公式的推導過程2、會運用半角公式進行相關的運算。二、自學過程:C2α中令得cosα=2cos22?-1=1-2sin22?,將公式變形可得2?C=;2?S=。2.2?T的推導方法是2?S與2?C兩