【總結(jié)】第二章平面向量第二章2.3平面向量的基本定理及坐標(biāo)表示第二章2.平面向量的正交分解及坐標(biāo)表示2.平面向量的坐標(biāo)運(yùn)算課前自主預(yù)習(xí)課堂典例講練課后強(qiáng)化作業(yè)課前自主預(yù)習(xí)溫故知新1.所謂的共線(平行)向量是指________,向量共線定理的內(nèi)容是__
2025-06-19 16:22
【總結(jié)】平面向量的坐標(biāo)運(yùn)算(二)一、填空題1.已知三點(diǎn)A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點(diǎn)坐標(biāo)是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
2024-12-05 10:15
【總結(jié)】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【總結(jié)】§2.平面向量共線的坐標(biāo)表示【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、在理解向量共線的概念的基礎(chǔ)上,學(xué)習(xí)用坐標(biāo)表示向量共線的條件。2、利用向量共線的坐標(biāo)表示解決有關(guān)問題?!局R(shí)梳理、雙基再現(xiàn)】1、兩向量平行(共線)的條件若//(0)abb?則存在唯一實(shí)數(shù)使//ab?;反之,存在唯一實(shí)數(shù)?。使//
2024-11-30 13:46
【總結(jié)】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點(diǎn)共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點(diǎn)在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個(gè)數(shù),而且使問題具有代數(shù)化的特點(diǎn)、程序
2024-11-19 20:38
【總結(jié)】課題:平面向量復(fù)習(xí)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過本章的復(fù)習(xí),對知識(shí)進(jìn)行一次梳理,突出知識(shí)間的內(nèi)在聯(lián)系,提高綜合運(yùn)用向量知識(shí)解決問題的能力。【課前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
2024-12-05 03:24
【總結(jié)】§4平面向量的坐標(biāo)4.1平面向量的坐標(biāo)表示4.2平面向量線性運(yùn)算的坐標(biāo)表示4.3向量平行的坐標(biāo)表示,)1.問題導(dǎo)航(1)相等向量的坐標(biāo)相同嗎?相等向量的起點(diǎn)、終點(diǎn)的坐標(biāo)一定相同嗎?(2)求向量AB→的坐標(biāo)需要知道哪些量?(3)兩個(gè)向量a=(x1,y
2024-11-28 00:13
【總結(jié)】?1.平面向量共線的坐標(biāo)表示?設(shè)a=(x1,y1),b=(x2,y2),則a∥b?.?2.下列各組向量中,共線的是?()?A.a(chǎn)=(-1,2),b=(3,5)?B.a(chǎn)=(1,2),b=(2,1)?C.a(chǎn)=(2,-1),b=(3,4)?D.a(chǎn)=(-2,1
2025-08-05 18:26
【總結(jié)】撰稿教師:李麗麗學(xué)習(xí)目標(biāo)1.了解平面向量基本定理,掌握平面向量基本定理及其應(yīng)用2.利用平面向量基本定理解決有關(guān)問題學(xué)習(xí)過程一、課前準(zhǔn)備(預(yù)習(xí)教材96頁~98頁,找出疑惑之處)二、新課導(dǎo)學(xué)1、平行向量基本定理2、平面內(nèi)任一向量是否可以用兩個(gè)不共線的向量來表示。如圖,設(shè)2
2024-11-18 16:44
【總結(jié)】課題:平面向量基本定理班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、了解平面向量基本定理;2、掌握平面向量基本定理及其應(yīng)用?!菊n前預(yù)習(xí)】1、共線向量基本定理一般地,對于兩個(gè)向量??baa,0?,如果有一個(gè)實(shí)數(shù)?,使_______
2024-11-19 21:43
【總結(jié)】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《平面向量》10平面向量數(shù)量積的坐標(biāo)表示導(dǎo)學(xué)案北師大版必修4使用說明96頁到第97頁內(nèi)容,完成預(yù)習(xí)引導(dǎo)的全部內(nèi)容.,大膽展示,充分發(fā)揮學(xué)習(xí)小組的高效作用,完成合作探究部分.學(xué)習(xí)目標(biāo)1.掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算.2.理解掌握向量的模、夾角等公式;
2024-11-19 23:19
【總結(jié)】高考總復(fù)習(xí)高中數(shù)學(xué)高考總復(fù)習(xí)平面向量基本定理及坐標(biāo)表示習(xí)題及詳解一、選擇題1.(2010·安徽)設(shè)向量a=(1,0),b=(,),則下列結(jié)論中正確的是( )A.|a|=|b| B.a(chǎn)·b=C.a(chǎn)-b與b垂直 D.a(chǎn)∥b[答案] C[解析] |a|=1,|b|=,故A錯(cuò);a·b=,故B錯(cuò);(a-b)·b=
2025-04-17 12:41
【總結(jié)】圓學(xué)子夢想鑄金字品牌溫馨提示:此套題為Word版,請按住Ctrl,滑動(dòng)鼠標(biāo)滾軸,調(diào)節(jié)合適的觀看比例,答案解析附后。課時(shí)提能演練(二十)/課后鞏固作業(yè)(二十)(30分鐘50分)一、選擇題(每小題4分,共16分)≠0,且a的起點(diǎn)不是原點(diǎn)O,則()(A)使得=a的點(diǎn)A不是唯一的(B)不存在點(diǎn)B,使得=a(C)使得=-a的點(diǎn)C是存在的,也是唯一的
2025-07-23 20:42
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點(diǎn)?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個(gè)向量和使得a→11λa→22λa→=a
2024-11-17 17:19
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點(diǎn):首尾相接特點(diǎn):共起點(diǎn)bBaABAab??:O特點(diǎn):共起點(diǎn):::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個(gè)實(shí)數(shù),使得ab
2024-11-17 19:47