freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)培優(yōu)易錯(cuò)試卷(含解析)之平行四邊形附答案(編輯修改稿)

2025-04-03 01:19 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 (3)當(dāng)正三角形AEF的邊AE與BC垂直時(shí),邊AE最短.△AEF的面積會(huì)隨著AE的變化而變化,且當(dāng)AE最短時(shí),正三角形AEF的面積會(huì)最小,又根據(jù)S△CEF=S四邊形AECFS△AEF,則△CEF的面積就會(huì)最大.試題解析:(1)證明:連接AC,∵∠1+∠2=60176。,∠3+∠2=60176。,∴∠1=∠3,∵∠BAD=120176。,∴∠ABC=∠ADC=60176?!咚倪呅蜛BCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD為等邊三角形∴∠4=60176。,AC=AB,∴在△ABE和△ACF中,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,則S△ABE=S△ACF.故S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H點(diǎn),則BH=2,S四邊形AECF=S△ABC===;(3)解:由“垂線段最短”可知,當(dāng)正三角形AEF的邊AE與BC垂直時(shí),邊AE最短.故△AEF的面積會(huì)隨著AE的變化而變化,且當(dāng)AE最短時(shí),正三角形AEF的面積會(huì)最小,又S△CEF=S四邊形AECF﹣S△AEF,則△CEF的面積就會(huì)最大.由(2)得,S△CEF=S四邊形AECF﹣S△AEF=﹣=.點(diǎn)睛:本題考查了菱形每一條對(duì)角線平分一組對(duì)角的性質(zhì),考查了全等三角形的證明和全等三角形對(duì)應(yīng)邊相等的性質(zhì),考查了三角形面積的計(jì)算,本題中求證△ABE≌△ACF是解題的關(guān)鍵.8.正方形ABCD,點(diǎn)E在邊BC上,點(diǎn)F在對(duì)角線AC上,連AE.(1)如圖1,連EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周長(zhǎng);(2)如圖2,若AF=AB,過(guò)點(diǎn)F作FG⊥AC交CD于G,點(diǎn)H在線段FG上(不與端點(diǎn)重合),連AH.若∠EAH=45176。,求證:EC=HG+FC.【答案】(1);(2)證明見(jiàn)解析【解析】【分析】(1)由正方形性質(zhì)得出AB=BC=CD=AD=4,∠B=∠D=90176。,∠ACB=∠ACD=∠BAC=∠ACD=45176。,得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周長(zhǎng);(2)延長(zhǎng)GF交BC于M,連接AG,則△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=CF,證出BM=DG,證明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再證明△ABE≌△AFH,得出BE=FH,即可得出結(jié)論.【詳解】(1)∵四邊形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90176。,∠ACB=∠ACD=∠BAC=∠ACD=45176。,∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE=,∴△AEF的周長(zhǎng)=AE+EF+AF=;(2)證明:延長(zhǎng)GF交BC于M,連接AG,如圖2所示:則△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45176。,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AFH=90176。,在△ABE和△AFH中,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,F(xiàn)G=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.【點(diǎn)睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理等知識(shí);熟練掌握等腰直角三角形的判定與性質(zhì),證明三角形全等是解題的關(guān)鍵.9.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD延長(zhǎng)線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見(jiàn)解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD∠ECD=∠ECG∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中, ∴△BCE≌△DCG(SAS),∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE= ,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.10.如圖,點(diǎn)O是正方形ABCD兩條對(duì)角線的交點(diǎn),分別延長(zhǎng)CO到點(diǎn)G,OC到點(diǎn)E,使OG=2OD、OE=2OC,然后以O(shè)G、OE為鄰邊作正方形OEFG.(1)如圖1,若正方形OEFG的對(duì)角線交點(diǎn)為M,求證:四邊形CDME是平行四邊形.(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),得到正方形OE′F′G′,如圖2,連接AG′,DE′,求證:AG′=DE′,AG′⊥DE′;(3)在(2)的條件下,正方形OE′F′G′的邊OG′與正方形ABCD的邊相交于點(diǎn)N,如圖3,設(shè)旋轉(zhuǎn)角為α(0176。<α<180176。),若△AON是等腰三角形,請(qǐng)直接寫(xiě)出α的值.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)176?;?5176。176。或135176。176。.【解析】【分析】(1)由四邊形OEFG是正方形,得到ME=GE,根據(jù)三角形的中位線的性質(zhì)得到CD∥GE,CD=GE,求得CD=GE,即可得到結(jié)論;(2)如圖2,延長(zhǎng)E′D交AG′于H,由四邊形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90176。,由四邊形OEFG是正方形,得到OG′=OE′,∠E′OG′=90176。,由旋轉(zhuǎn)的性質(zhì)得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根據(jù)全等三角形的性質(zhì)得到AG′=DE′,∠AG′O=∠DE′O,即可得到結(jié)論;(3)分類(lèi)
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1