freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學備考之平行四邊形壓軸突破訓練∶培優(yōu)-易錯-難題篇附答案解析(編輯修改稿)

2025-04-02 00:03 本頁面
 

【文章內(nèi)容簡介】 );(2)證明見解析【解析】【分析】(1)由正方形性質(zhì)得出AB=BC=CD=AD=4,∠B=∠D=90176。,∠ACB=∠ACD=∠BAC=∠ACD=45176。,得出AC=AB=4,求出AF=3,CF=AC﹣AF=,求出△CEF是等腰直角三角形,得出EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理求出AE,即可得出△AEF的周長;(2)延長GF交BC于M,連接AG,則△CGM和△CFG是等腰直角三角形,得出CM=CG,CG=CF,證出BM=DG,證明Rt△AFG≌Rt△ADG得出FG=DG,BM=FG,再證明△ABE≌△AFH,得出BE=FH,即可得出結論.【詳解】(1)∵四邊形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90176。,∠ACB=∠ACD=∠BAC=∠ACD=45176。,∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE=,∴△AEF的周長=AE+EF+AF=;(2)證明:延長GF交BC于M,連接AG,如圖2所示:則△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45176。,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AFH=90176。,在△ABE和△AFH中,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,F(xiàn)G=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、等腰直角三角形的判定與性質(zhì)、勾股定理等知識;熟練掌握等腰直角三角形的判定與性質(zhì),證明三角形全等是解題的關鍵.8.在中,于點,點為邊的中點,過點作,交的延長線于點,連接.如圖,求證:四邊形是矩形;如圖,當時,取的中點,連接、在不添加任何輔助線和字母的條件下,請直接寫出圖中所有的平行四邊形(不包括矩形).【答案】(1) 證明見解析;(2)四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【解析】【分析】(1)由△AEF≌△CED,推出EF=DE,又AE=EC,推出四邊形ADCF是平行四邊形,只要證明∠ADC=90176。,即可推出四邊形ADCF是矩形.(2)四邊形ABDF、四邊形AGEF、四邊形GBDE、四邊形AGDE、四邊形GDCE都是平行四邊形.【詳解】證明:∵,∴,∵是中點,∴,在和中,∴,∴,∵,∴四邊形是平行四邊形,∵,∴,∴四邊形是矩形.∵線段、線段、線段都是的中位線,又,∴,,∴四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【點睛】考查平行四邊形的判定、矩形的判定、三角形的中位線定理、全等三角形的判定和性質(zhì)等知識,正確尋找全等三角形解決問題是解題的關鍵.9.點P是矩形ABCD對角線AC所在直線上的一個動點(點P不與點A,C重合),分別過點A,C向直線BP作垂線,垂足分別為點E,F(xiàn),點O為AC的中點.(1)如圖1,當點P與點O重合時,請你判斷OE與OF的數(shù)量關系;(2)當點P運動到如圖2所示位置時,請你在圖2中補全圖形并通過證明判斷(1)中的結論是否仍然成立;(3)若點P在射線OA上運動,恰好使得∠OEF=30176。時,猜想此時線段CF,AE,OE之間有怎樣的數(shù)量關系,直接寫出結論不必證明.【答案】(1)OE=OF.理由見解析;(2)補全圖形如圖所示見解析,OE=OF仍然成立;(3)CF=OE+AE或CF=OE﹣AE.【解析】【分析】(1)根據(jù)矩形的性質(zhì)以及垂線,即可判定,得出OE=OF;(2)先延長EO交CF于點G,通過判定,得出OG=OE,再根據(jù)中,即可得到OE=OF;(3)根據(jù)點P在射線OA上運動,需要分兩種情況進行討論:當點P在線段OA上時,當點P在線段OA延長線上時,分別根據(jù)全等三角形的性質(zhì)以及線段的和差關系進行推導計算即可.【詳解】(1)OE=OF.理由如下:如圖1.∵四邊形ABCD是矩形,∴ OA=OC.∵,∴.∵在和中,∴,∴ OE=OF;(2)補全圖形如圖2,OE=OF仍然成立.證明如下:延長EO交CF于點G.∵,∴ AE//CF,∴.又∵點O為AC的中點,∴ AO=CO.在和中,∴,∴ OG=OE,∴中,∴ OE=OF;(3)CF=OE+AE或CF=OEAE.證明如下:①如圖2,當點P在線段OA上時.∵,∴,由(2)可得:OF=OG,∴是等邊三角形,∴ FG=OF=OE,由(2)可得:,∴ CG=AE.又∵ CF=GF+CG,∴ CF=OE+AE;②如圖3,當點P在線段OA延長線上時.∵,∴,同理可得:是等邊三角形,∴ FG=OF=OE,同理可得:,∴ CG=AE.又∵ CF=GFCG,∴ CF=OEAE.【點睛】本題屬于四邊形綜合題,主要考查了矩形的性質(zhì)、全等三角形的性質(zhì)和判定以及等邊三角形的性質(zhì)和判定,解決問題的關鍵是構建全等三角形和證明三角形全等,利用矩形的對角線互相平分得全等的邊相等的條件,根據(jù)線段的和差關系使問題得以解決.10.猜想與證明:如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關系,并證明你的結論.拓展與延伸:(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關系為  ?。?)如圖2擺放正方形紙片ABC
點擊復制文檔內(nèi)容
法律信息相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1