freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)-易錯-難題篇及詳細(xì)答案(1)(編輯修改稿)

2025-03-30 22:21 本頁面
 

【文章內(nèi)容簡介】 于點(diǎn),連接.如圖,求證:四邊形是矩形;如圖,當(dāng)時,取的中點(diǎn),連接、在不添加任何輔助線和字母的條件下,請直接寫出圖中所有的平行四邊形(不包括矩形).【答案】(1) 證明見解析;(2)四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【解析】【分析】(1)由△AEF≌△CED,推出EF=DE,又AE=EC,推出四邊形ADCF是平行四邊形,只要證明∠ADC=90176。,即可推出四邊形ADCF是矩形.(2)四邊形ABDF、四邊形AGEF、四邊形GBDE、四邊形AGDE、四邊形GDCE都是平行四邊形.【詳解】證明:∵,∴,∵是中點(diǎn),∴,在和中,∴,∴,∵,∴四邊形是平行四邊形,∵,∴,∴四邊形是矩形.∵線段、線段、線段都是的中位線,又,∴,,∴四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【點(diǎn)睛】考查平行四邊形的判定、矩形的判定、三角形的中位線定理、全等三角形的判定和性質(zhì)等知識,正確尋找全等三角形解決問題是解題的關(guān)鍵.8.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點(diǎn)E在邊AD上,點(diǎn)G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD∠ECD=∠ECG∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中, ∴△BCE≌△DCG(SAS),∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE= ,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.9.猜想與證明:如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若M為AF的中點(diǎn),連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.拓展與延伸:(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為   .(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.【答案】猜想:DM=ME,證明見解析;(2)成立,證明見解析.【解析】試題分析:延長EM交AD于點(diǎn)H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(1)、延長EM交AD于點(diǎn)H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(2)、連接AE,根據(jù)正方形的性質(zhì)得出∠FCE=45176。,∠FCA=45176。,根據(jù)RT△ADF中AM=MF得出DM=AM=MF,根據(jù)RT△AEF中AM=MF得出AM=MF=ME,從而說明DM=ME.試題解析:如圖1,延長EM交AD于點(diǎn)H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如圖1,延長EM交AD于點(diǎn)H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如圖2,連接AE,∵四邊形ABCD和ECGF是正方形,∴∠FCE=45176。,∠FCA=45176。,∴AE和EC在同一條直線上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考點(diǎn):(1)、三角形全等的性質(zhì);(2)、矩形的性質(zhì).10.問題情境在四邊形ABCD中,BA=BC,DC⊥AC,過點(diǎn)D作DE∥AB交BC的延長線于點(diǎn)E,M是邊AD的中點(diǎn),連接MB,ME. 特例探究(1)如圖1,當(dāng)∠ABC=90176。時,寫出線段MB與ME的數(shù)量關(guān)系,位置關(guān)系; (2)如圖2,當(dāng)∠ABC=120176。時,試探究線段MB與ME的數(shù)量關(guān)系,并證明你的結(jié)論; 拓展延伸(3)如圖3,當(dāng)∠ABC=α?xí)r,請直接用含α的式子表示線段MB與ME之間的數(shù)量關(guān)系.【答案】(1)MB=ME,MB⊥ME;(2)ME=MB.證明見解析;(3)ME=MBtan.【解析】【分析】(1)如圖1中,連接CM.只要證明△MBE是等腰直角三角形即可;(2)結(jié)論:EM=MB.只要
點(diǎn)擊復(fù)制文檔內(nèi)容
語文相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1