freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)易錯試卷篇含答案(編輯修改稿)

2025-03-30 22:26 本頁面
 

【文章內(nèi)容簡介】 t△ACD中,N為AC的中點,∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中點,∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四邊形DMEN是平行四邊形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【點睛】本題是三角形的綜合題,主要考查了全等三角形的判定與性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定等知識,解題的關(guān)鍵是作輔助線,并熟練掌握全等三角形的判定方法,特別是第三問,輔助線的作法是關(guān)鍵.7.如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF.連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.(1)請判斷:FG與CE的關(guān)系是___;(2)如圖2,若點E,F(xiàn)分別是邊CB,BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請作出判斷并給予證明;(3)如圖3,若點E,F(xiàn)分別是邊BC,AB延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請直接寫出你的判斷.【答案】(1)FG=CE,F(xiàn)G∥CE;(2)成立;(3)成立.【解析】試題分析:(1)只要證明四邊形CDGF是平行四邊形即可得出FG=CE,F(xiàn)G∥CE;(2)構(gòu)造輔助線后證明△HGE≌△CED,利用對應(yīng)邊相等求證四邊形GHBF是矩形后,利用等量代換即可求出FG=C,F(xiàn)G∥CE;(3)證明△CBF≌△DCE后,即可證明四邊形CEGF是平行四邊形.試題解析:解:(1)FG=CE,F(xiàn)G∥CE;(2)過點G作GH⊥CB的延長線于點H.∵EG⊥DE,∴∠GEH+∠DEC=90176。.∵∠GEH+∠HGE=90176。,∴∠DEC=∠HE.在△HGE與△CED中,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四邊形GHBF是矩形,∴GF=BH,F(xiàn)G∥CH,∴FG∥CE.∵四邊形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四邊形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90176。.在△CBF與△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90176。.∵∠CDE+∠DEC=90176。,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四邊形CEGF平行四邊形,∴FG∥CE,F(xiàn)G=CE.8.在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.【答案】(1)見解析;(2).【解析】【分析】(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90176。.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識點,能熟記折疊的性質(zhì)是解答此題的關(guān)鍵.9.如圖,拋物線y=mx2+2mx+n經(jīng)過A(﹣3,0),C(0,﹣)兩點,與x軸交于另一點B.(1)求經(jīng)過A,B,C三點的拋物線的解析式;(2)過點C作CE∥x軸交拋物線于點E,寫出點E的坐標(biāo),并求AC、BE的交點F的坐標(biāo)(3)若拋物線的頂點為D,連結(jié)DC、DE,四邊形CDEF是否為菱形?若是,請證明;若不是,請說明理由.【答案】(1)y=x2+x﹣;(2)F點坐標(biāo)為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明見解析【解析】【分析】將A、C點的坐標(biāo)代入拋物線的解析式中,通過聯(lián)立方程組求得該拋物線的解析式;根據(jù)(1)題所得的拋物線的解析式,可確定拋物線的對稱軸方程以及B、C點的坐標(biāo),由CE∥x軸,可知C、E關(guān)于對稱軸對稱。根據(jù)A、C點求得直線AC的解析式,根據(jù)B、E點求出直線BE的解析式,聯(lián)立方程求得的解,即為F點的坐標(biāo);由E、C、F、D的坐標(biāo)可知DF和EC互相垂直平分,則可判定四邊形CDEF為菱形.【詳解】(1)∵拋物線y=mx2+2mx+n經(jīng)過A(﹣3,0),C(0,﹣)兩點,∴,解得,∴拋物線解析式為y=x2+x﹣;(2)∵y=x2+x﹣,∴拋物線對稱軸為直線x=﹣1,∵CE∥x軸,∴C、E關(guān)于對稱軸對稱,∵C(0,﹣),∴E(﹣2,﹣),∵A、B關(guān)于對稱軸對稱,∴B(1,0),設(shè)直線AC、BE解析式分別為y=kx+b,y=k′x+b′,則由題意可得,解得,∴直線AC、BE解析式分別為y=﹣x﹣,y=x﹣,聯(lián)立兩直線解析式可得,解得,∴F點坐標(biāo)為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明:∵y=x2+x﹣=(x+1)2﹣2,∴D(﹣1,﹣2),∵F(﹣1,﹣1),∴DF⊥x軸,且CE∥x軸,∴DF⊥CE,∵C(0,﹣),且F(﹣1,﹣1),D(﹣1,﹣2),∴DF和CE互相平分,∴四邊形CDEF是菱形.【點睛】本題考查菱形的判定方法,二次函數(shù)的性質(zhì),以及二次函數(shù)與二元一次方程組.10.如圖,在正方形ABCD中,點E在CD上,AF⊥AE交CB的延長線于F.求證:AE=AF.【答案】見解析【解析】【分析】根據(jù)同角的余角相等證得∠BAF=∠DAE,再利用正方形的性質(zhì)可得AB=AD,∠ABF=∠ADE=90176。,根據(jù)ASA判定△ABF≌△ADE,根據(jù)全等三角形的性質(zhì)即可證得AF=AE.【詳解】∵AF⊥AE,∴∠BAF+∠BAE=90176。,又∵∠DAE+∠BAE=90176。,∴∠BAF=∠DAE,∵四邊形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90176。,在△ABF和△ADE中,
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1