【總結】復習:向量數(shù)量積的定義是什么?如何求向量夾角?向量的運算律有哪些?平面向量的數(shù)量積有那些性質?答:babababa????????cos,cos運算律有:)()().(2bababa????????abba???.1cbcacba?????
2024-11-10 08:36
【總結】一、向量的直角坐標運算則設),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2024-11-09 01:17
【總結】平面向量的數(shù)量積一、知識梳理:?1、平面向量的數(shù)量積?(1)a與b的夾角:?(2)向量夾角的范圍:?(3)向量垂直:[00,1800]abθ共同的起點aOABbθOABOABOABOAB
2024-11-10 03:15
【總結】《平面向量數(shù)量積的物理背景及其含義》教學目標?;?;?;?.?教學重點:平面向量的數(shù)量積定義?教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用問題1:我們研究了向量的哪些運算?這些運算的結果是什么?一探究?問題2:我們是怎
2024-11-23 11:29
【總結】復習例題講解小結回顧引入新課講解性質講解課堂練習一般地,實數(shù)λ與向量a的積是一個向量,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當λ0時,λa的方向與a方向相同;當λ0時,λa
2024-10-19 17:18
【總結】§數(shù)量積的性質1.向量的數(shù)量積的定義是什么?一、復習鞏固2.?ab?向量數(shù)量積的幾何意義是什么cosabab???數(shù)量積定義cosabaabab??數(shù)量積等于的長度與在方向上的投影的乘積.
2024-10-19 17:16
【總結】一、向量的直角坐標運算二、距離與夾角(1)向量的長度(模)公式注意:此公式的幾何意義是表示長方體的對角線的長度。在空間直角坐標系中,已知、,則(2)空間兩點間的距離公式注意:(1)當時,同向;(2)當
2024-11-12 16:42
【總結】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2024-11-18 12:14
【總結】平面向量數(shù)量積的坐標表示四川省沐川中學劉少民平面向量數(shù)量積復習a和b,它們的夾角為θ,則a&
2024-11-09 05:07
【總結】平面向量的數(shù)量積1、向量的夾角ababOAB??18000???????或30當時,則稱a與b互相垂直,記作a⊥b.2???10當時,則稱a與b同向.0??20當時,則稱a與b反向.???注:
2024-11-23 12:04
【總結】2020年12月16日星期三學習目標?1.理解空間向量的概念,掌握空間向量的加法運算。?2.用空間向量的運算意義和運算律解決立幾問題。?重點:空間向量的加法、減法運算律。?難點:用向量解決立幾問題.OABC正東正北向上如圖:已知OA=6米,AB=6米,BC=3米,
2024-11-09 08:04
【總結】兩個基本計數(shù)原理問題一:從甲地到乙地,可以乘火車,也可以乘汽車,一天中,火車有3班,汽車有2班.那么一天中,乘坐這些交通工具從甲地到乙地共有多少種不同的走法?解:因為一天中乘火車有3種走法,乘汽車有2種走法,每一種走法都可以從甲地到乙地,所以共有3+2=5種不同的走法。分類計數(shù)原理又稱為加法原理。
2025-08-16 02:33
【總結】平面向量的數(shù)量積學法指導????向量的數(shù)量積?已知兩個非零向量與,它們的?夾角為θ,我們把數(shù)量叫做與的數(shù)量積(或內積,點乘),ab|||cos|ab?ab||||cosaba
2024-11-17 23:32
【總結】平面直線的方向向量是如何定義的?唯一嗎?如何表示空間直線的方向?空間直線的方向向量和平面的法向量對于空間任意一條直線l,我們把與直線平行的非零向量d叫做直線的一個方向向量。?方向向量空間直線的方向向量是唯一的嗎?一個空間向量能夠表示幾條空間直線的方向向量?例1:如圖所示的空間直角
2025-08-16 01:54
【總結】1、散點圖2、正相關3、負相關根據(jù)下表,作出散點圖(一)復習回顧(二)回歸直線2、回歸直線如果散點圖中點的分布從總體上看大致在一條直線附近,我們就稱這兩個變量之間具有線性相關關系。1、變量間的線性相關上述直線稱為回歸直線。(二)回歸直線3、如何求回歸直線的方程幾何畫板探
2025-08-16 02:01