【總結】排列組合專題訓練1.(2014?四川)六個人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ) A.192種B.216種C.240種D.288種考點:排列、組合及簡單計數(shù)問題.菁優(yōu)網(wǎng)版權所有專題:應用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結論.
2025-08-05 07:27
【總結】高二數(shù)學集體備課學案與教學設計章節(jié)標題選修2-3排列組合專題計劃學時1學案作者楊得生學案審核張愛敏高考目標掌握排列、組合問題的解題策略三維目標一、知識與技能。?;能運用解題策略解決簡單的綜合應用題。提高學生解決問題分析問題的能力??.二、過程與方法通過問題的探究,體會知識的類比遷移。以
2025-08-05 06:55
【總結】排列組合應用題數(shù)學教研組盛建芳復習回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2025-08-15 23:43
【總結】課時作業(yè)(一)1.衡水二中高一年級共8個班,高二年級共6個班,從中選一個班級擔任學校星期一早晨升旗任務,共有的安排方法種數(shù)是( )A.8 B.6C.14 D.48答案 C解析 一共有14個班,從中選1個,∴共有14種.2.教學大樓共有四層,每層都有東西兩個樓梯,由一層到四層共有的走法種數(shù)是( )A.32 B.23C.42 D.2
2025-07-23 03:44
【總結】排列組合復習二、重點難點三、綜合練習四、復習建議一、知識結構基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應用問題一、知識結構二、重點難點1.兩個基本原理
2024-11-18 00:34
【總結】《組合數(shù)學》第一章組合數(shù)學基礎第1章組合數(shù)學基礎1.排列組合的基本計數(shù)問題2.多項式系數(shù)的計算及其組合意義3.排列組合算法緒論(一)背景起源:數(shù)學游戲幻方問題:給定自然數(shù)1,2,…,n2,將其排列成n階方陣,要求每行、每列和每條對角線上n個數(shù)字之和都相等。這樣的n階方陣稱為n階幻方
2025-07-24 23:18
【總結】一,映射與排列組合問題變式:同(2)257對集合A中元素進行分類。二,排列組合中的映射思維通過集合A與另一個集合B之間的映射關系,將對集合A中元素的計數(shù)問題轉化為對集合B的計數(shù)。且A與B是一一對應關系。三,構造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2024-11-10 03:08
【總結】例“歡樂今宵”節(jié)目中,拿出兩個信箱.其中存放著先后兩次競猜中成績優(yōu)秀的觀眾來信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎確定幸運觀眾,若先確定一名“幸運之星”,然后再從兩信箱中各確定一名幸運伙伴,有多少種不同的結果?練習.如圖,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-09 06:20
【總結】排列組合常見題型及解題策略一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學生報名參加數(shù)學、物理、化學競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學生參加爭奪數(shù)學、
2025-08-04 18:28
【總結】排列組合復習課教學設計------龍巖二中郭小峰排列組合復習課一.教學內(nèi)容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數(shù)目問題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問題,需要考慮順序的是排列問題,排列是在組合的基礎上對入選的元素進行排隊,因此,分析解決排列組合問題的基本思維是“先組,后排”.,要注意四點:(1)
2025-05-01 04:21
【總結】.公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達式應該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結】排列組合綜合問題教學目標通過教學,學生在進一步加深對排列、組合意義理解的基礎上,掌握有關排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學會分類討論的思想.教學重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學用具投影儀.教學過程設計(一)引入師:現(xiàn)在我們大家已經(jīng)學習和掌握了一些排列問題和組
2025-03-25 02:37
【總結】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現(xiàn)有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
【總結】排列組合復習學案1重復排列“求冪運算”重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復。把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題。例18名同學爭奪3項冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【總結】12除做到:排列組合分清,加乘原理辯明,避免重復遺漏外,還應注意積累排列組合問題得以快速準確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36