【總結(jié)】解直角三角形高密市城南中學李宗洲(說課案例)標注點擊每頁幻燈片的圖標,則幻燈片翻頁一教材分析單元知識內(nèi)容:1直角三角形的邊角關(guān)系.2應用勾股定理、Rt△的兩銳角互余及銳角三角函數(shù)解直角三角形.3應用解直角三角形的有關(guān)知識解決一些簡單的實際問題(包括
2024-11-10 12:43
【總結(jié)】在RtΔABC中,若∠C=900,問題1.兩銳角∠A與∠B有什么關(guān)系?答:∠A+∠B=900.問題2.三邊a、b、c的關(guān)系如何?答:a2+b2=c2.問題3.∠B與邊的關(guān)系是
2024-11-10 01:51
【總結(jié)】解直角三角形選擇題1、(2020蘇州二模)如圖,把一張長方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個頂點都在橫格線上,已知?=36°,求長方形卡片的周長.(精確到1mm,參考數(shù)據(jù):sin36,cos36,tan36??????)
2024-11-16 03:22
【總結(jié)】解直角三角形(4)1、如圖,在Rt△ABC中:22復習ABC(1)∠A=30°,AB=4,解這個直角三角形;(2)tanA=,求∠A的大小。導入如圖,有三個斜坡,其坡面與水平面的夾角分別為α、β、γ,且αβγ
2024-11-21 00:14
【總結(jié)】解直角三角形的說課稿 各位領(lǐng)導老師同學們,大家下午好! 我說課的的題目是解直角三角形,它是第二十五章第三節(jié)內(nèi)容,我從下面五個方面說課。 第一方面:教材分析 1、本節(jié)的地位作用 《解直角三角形...
2024-12-04 22:53
【總結(jié)】精品資源《解直角三角形》基礎(chǔ)測試一填空題(每小題6分,共18分):1.在Rt△ABC中,∠C=90°,a=2,b=3,則cosA= ,sinB= ,tanB= ,cotB= ??;2.直角三角形ABC的面積為24cm2,直角邊AB為6cm,∠A是銳角,則sinA= ??;3.等腰三角形底邊長10cm,周長為36cm,則一底角的余切值為 .
2025-03-25 07:47
【總結(jié)】“啟發(fā)”輔導中心專用資料九(下)數(shù)學輔導---------解直角三角形21、計算:(1)(2)(3)cos30°+sin45°(4)6tan230°-sin60°-2sin45°
2025-08-17 07:43
【總結(jié)】第25章?解直角三角形復習第25章?解直角三角形復習二.重點、難點:?1.重點:???(1)探索直角三角形中銳角三角函數(shù)值與三邊之間的關(guān)系.掌握三角函數(shù)定義式:sinA=,cosA=,tanA=,cotA=.???(2)掌握30°、45°、60&
2025-06-07 22:10
【總結(jié)】(2010哈爾濱)在Rt△ABC中,∠C=90°,∠B=35°,AB=7,則BC的長為().C(A)7sin35°(B)(C)7cos35°(D)7tan35°(2010紅河自治州)計算:+2sin60°=(2010紅河自治州)(本小題滿分9分)如圖5,一架飛機
2025-08-04 12:59
2025-08-05 19:13
【總結(jié)】解直角三角形1.(2016·山東省菏澤市·3分)如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為( )A.25:9 B.5:3 C.: D.5:3【考點】互余兩角三角函數(shù)的關(guān)系.【分析】先根據(jù)等腰三角形的性質(zhì)得到∠B=∠C,∠B′=∠C′,根
2025-01-15 07:30
【總結(jié)】直角三角形要點一:勾股定理及其逆定理一、選擇題1.(2009·達州中考)如圖是一株美麗的勾股樹,其中所有的四邊形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的邊長分別是3、5、2、3,則最大正方形E的面積是()A.13B.26C.47D.94【解析】選C
2025-08-04 23:12
【總結(jié)】第二節(jié)解直角三角形及其應用考點一解直角三角形的應用例1(2022·湖南岳陽中考)圖1是某小區(qū)入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC寬,門衛(wèi)室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為,燈臂OM長為(燈罩長度忽略不計),∠AOM=60°.(1)求點M到地面的距離;
2025-06-17 19:54
2025-06-17 19:45
【總結(jié)】2012屆中考數(shù)學解直角三角形及其應用專題復習(備戰(zhàn)中考)中考數(shù)學深度復習講義(教案+中考真題+模擬試題+單元測試)解直角三角形及其應用◆考點聚焦???1.掌握并靈活應用各種關(guān)系解直角三角形,這是本節(jié)重點.???2.了解測量中的概念,并能靈活應用相關(guān)知識解決某些實際問題,而在將實際問題轉(zhuǎn)化為直角三角形問
2025-08-04 07:50