【總結(jié)】1.立體幾何初步(1)空間幾何體①認(rèn)識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡單物體的結(jié)構(gòu).②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會用斜二測法畫出它們的直觀圖.③會用平行投影與中心
2025-06-16 12:13
【總結(jié)】分享智慧泉源智愛學(xué)習(xí)傳揚(yáng)愛心喜樂Wisdom&Love第1頁(共32頁)2022年2月5日星期六立體幾何1.平面平面的基本性質(zhì):掌握三個(gè)公理及推論
2025-01-09 14:36
【總結(jié)】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復(fù)習(xí)建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關(guān)系以及幾何體的有關(guān)問題,常需作輔助線,但有時(shí)卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結(jié)合,通過向量的代數(shù)計(jì)算解決問題,無須添加輔助線。用空間向量解立幾問題
2024-11-09 12:27
【總結(jié)】第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)第三章空間向量與立體幾何人教A版數(shù)學(xué)1.知識與技能掌握空間向量的數(shù)乘運(yùn)算.理解共線向量,直線的方向向量和共面向量.2.過程與方法
2024-10-16 20:16
【總結(jié)】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【總結(jié)】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點(diǎn)為中點(diǎn),點(diǎn)為中點(diǎn),點(diǎn)為上一點(diǎn),且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2024-08-02 12:16
【總結(jié)】高考鏈接三視圖專題訓(xùn)練[2011·安徽卷]一個(gè)空間幾何體的三視圖如圖1-1所示,則該幾何體的表面積為( )圖1-1A.48B.32+8C.48+8D.80[2011·安徽卷]C 【解析】由三視圖可知本題所給的是一個(gè)底面為等腰梯形的放倒的直四棱柱(如圖所示),所以該直四棱柱的表面積為S=2××(
2025-03-25 06:43
【總結(jié)】空間向量的引入為代數(shù)方法處理立體幾何問題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而回避了一些嚴(yán)謹(jǐn)?shù)耐评碚撟C。求空間角與距離是立體幾何的一類重要的問題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角與距離的問題。建立空間直角坐標(biāo)系,解立體幾何題1122330???abab
2024-11-09 01:53
【總結(jié)】第35講空間幾何體的結(jié)構(gòu)第36講空間幾何體的三視圖和直觀圖第37講平面的基本性質(zhì)第38講空間中的平行關(guān)系│知識框架知識框架│知識框架│知識框架1.空間幾何體(1)認(rèn)識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運(yùn)用
2024-07-31 16:34
【總結(jié)】空間向量在立體幾何中的應(yīng)用5前段時(shí)間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點(diǎn)面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計(jì)算問題。一、空間向量的運(yùn)算及其坐標(biāo)運(yùn)算的掌握二、立體
2025-01-08 14:05
【總結(jié)】第六講立體幾何新題型【考點(diǎn)透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個(gè)平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標(biāo)的概念,掌握空間向量的坐標(biāo)運(yùn)算.③掌握空間向量的數(shù)量積的定義及其性質(zhì),掌握用直角坐標(biāo)計(jì)算空間向量數(shù)量積公式.④理解直線的方向向量
2024-08-14 18:17
【總結(jié)】華夏學(xué)校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14
【總結(jié)】高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為
【總結(jié)】1上杭縣高級中學(xué)講課人:周文才時(shí)間:07年12月14日2345678所以:解:以點(diǎn)C為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系如圖所示,設(shè)則C||所以與所成角的余弦值為9設(shè)平面xyz點(diǎn)評:找到
2024-11-12 16:42
【總結(jié)】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿分12分)(注意:在試題卷上作答無效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43