【總結(jié)】2009高考數(shù)學(xué)解答題專題攻略----立體幾何09高考立體幾何分析與預(yù)測(cè):立體幾何是高中數(shù)學(xué)中的重要內(nèi)容,也是高考的熱點(diǎn)內(nèi)容。該部分新增加了三視圖,對(duì)三視圖的考查應(yīng)引起格外的注意。立體幾何在高考解答題中,常以空間幾何體(柱,錐,臺(tái))為背景,考查幾何元素之間的位置關(guān)系。另外還應(yīng)注意非標(biāo)準(zhǔn)圖形的識(shí)別、三視圖的運(yùn)用、圖形的翻折、求體積時(shí)的割補(bǔ)思想等,以及把運(yùn)動(dòng)的思想引進(jìn)立體幾何。最近幾年綜合分
2025-01-15 10:22
【總結(jié)】廣東高考數(shù)學(xué)真題匯編:立體幾何1、(2011?廣東文數(shù))正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線稱為它的對(duì)角線,那么一個(gè)正五棱柱對(duì)角線的條數(shù)共有( ?。?A、20 B、15C、12 D、101解答:解:由題意正五棱柱對(duì)角線一定為上底面的一個(gè)頂點(diǎn)和下底面的一個(gè)頂點(diǎn)的連線,因?yàn)椴煌谌魏蝹?cè)面內(nèi),故從一個(gè)頂點(diǎn)出發(fā)的對(duì)角線有2條.正五棱柱對(duì)角線的條
2025-04-07 21:28
【總結(jié)】專題四立體幾何專題內(nèi)容反映了作者近年來(lái)高考輔導(dǎo)的成功經(jīng)驗(yàn)和高考命題研究的最新成果,具有把握高考脈搏準(zhǔn)確、信息及時(shí)全面、材料新穎、方法靈活、講解透徹、點(diǎn)拔到位、注重分析、注重提高的特點(diǎn)。專題以提高能力和提高成績(jī)?yōu)橹笇?dǎo)思想,一方面,立足基礎(chǔ),突出重點(diǎn)主干知識(shí),注重分析,即在分析解題過(guò)程中,揭示題目的本質(zhì)結(jié)構(gòu)、解析難點(diǎn)、點(diǎn)撥疑點(diǎn)、舉一反
2025-08-01 17:17
【總結(jié)】第1頁(yè)版權(quán)所有不得復(fù)制立體幾何中的數(shù)量問(wèn)題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角]2,0(?(2)直線與平面所成角]2,0[?(3)二面角],0[?2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB
2025-07-29 15:14
【總結(jié)】立體幾何中的數(shù)量問(wèn)題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角(2)直線與平面所成角(3)二面角2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB、PC兩兩垂直,與PA、PB所成角為45°,60°,求與PC所成角。解:構(gòu)造長(zhǎng)方體[例2]正四棱錐S—A
2025-06-07 23:44
【總結(jié)】主講教師:立體幾何復(fù)習(xí)例1.正方體A1B1C1D1-ABCD的棱長(zhǎng)為a,在AD1和BD上分別截取AP=BQ=a.求證:(1)PQ∥平面CD1;(2)PQ⊥BC.ACDD1A1B1C1BPQ例,四棱錐P-ABCD的底面ABCD是矩形,PA⊥平
2024-11-09 09:19
【總結(jié)】1立體幾何測(cè)試卷時(shí)量:90分鐘滿分:100分班級(jí)學(xué)號(hào)姓名一、選擇題(4’×10=40’)1.一條直線與一個(gè)平面所成的角等于3?,另一直線與這個(gè)平面所成的角是6?.則這兩條直線的位置關(guān)系()A.必定相
2025-01-09 16:30
【總結(jié)】立體幾何直線、平面、簡(jiǎn)單幾何體三個(gè)公理、三個(gè)推論平面平行直線異面直線相交直線公理4及等角定理異面直線所成的角異面直線間的距離直線在平面內(nèi)直線與平面平行直線與平面相交空間兩條直線概念、判定與性質(zhì)三垂線定理垂直斜交直線與平面所成的角空間直線與平面空間兩個(gè)平面棱柱棱錐球兩個(gè)平面平行兩個(gè)平面相交距
2025-04-17 12:56
【總結(jié)】立體幾何專題1.如圖4,在邊長(zhǎng)為1的等邊三角形中,分別是邊上的點(diǎn),,是的中點(diǎn),與交于點(diǎn),將沿折起,得到如圖5所示的三棱錐,其中.(1)證明://平面;(2)證明:平面;(3)當(dāng)時(shí),求三棱錐的體積.【解析】(1)在等邊三角形中,,在折疊后的三棱錐中也成立,,平面,平面,平面;(2)在等邊三角形中,是的中點(diǎn),所以①,.在
2025-05-03 00:35
【總結(jié)】1·如圖,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,P為側(cè)棱SD上的點(diǎn)。(Ⅰ)求證:AC⊥SD;(Ⅱ)若SD⊥平面PAC,求二面角P-AC-D的大?。á螅┰冢á颍┑臈l件下,側(cè)棱SC上是否存在一點(diǎn)E,∥平面PAC。若存在,求SE:EC的值;若不存在,試說(shuō)明理由。
2025-04-17 07:49
【總結(jié)】高考文科數(shù)學(xué)立體幾何題型與方法(文科)一、考點(diǎn)回顧1.平面(1)平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說(shuō)明共點(diǎn)、共線、共面問(wèn)題。(2)證明點(diǎn)共線的問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣,可根據(jù)公理2證明這些點(diǎn)都在這兩個(gè)平面的
2025-01-14 15:13
【總結(jié)】常規(guī)幾何圖形的立體幾何問(wèn)題1.如圖,在長(zhǎng)方體中,點(diǎn)在棱的延長(zhǎng)線上,且.BEADC(Ⅰ)求證:∥平面;(Ⅱ)求證:平面平面;(Ⅲ)求四面體的體積.ABCPD,在四棱錐中,平面平面,,是等邊三角形,已知,.(1)求證:平面;(2)求三棱錐的體積.3.如圖,四棱錐
2025-04-17 08:18
【總結(jié)】專業(yè)整理分享文科立體幾何大題復(fù)習(xí) 一.解答題(共12小題)1.如圖1,在正方形ABCD中,點(diǎn),E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,點(diǎn)G,R分別在線段DH,HB上,且.將△AED,△CFD,△BEF分別沿DE,DF,EF折起,使點(diǎn)A,B,C重合于點(diǎn)P,如圖2所示.
2025-04-17 01:27
【總結(jié)】1.直線與平面平行的判定①判定定理:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行???面∥,面,∥aabba???②面面平行的性質(zhì):若兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的任何直線與另一個(gè)平面平行。????∥,,∥aa??2.直線和平面垂直的判定①判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直
2025-01-09 21:42
【總結(jié)】10《高中復(fù)習(xí)資料》數(shù)學(xué)1.甲烷分子由一個(gè)碳原子和四個(gè)氫原子組成,其空間構(gòu)型為一正四面體,碳原子位于該正四面體的中心,個(gè)點(diǎn)(體積忽略不計(jì)),且已知碳原子與每個(gè)氫原子間的距離都為,則以四個(gè)氫原子為頂點(diǎn)的這個(gè)正四面體的體積為()A,B,C,D,2.夾在兩個(gè)平行平面之間的球,圓柱,圓錐在這兩個(gè)平面上的射影
2025-04-17 13:10