【總結(jié)】球體的三視圖圓柱的三視圖圓錐的三視圖由三視圖描述幾何體根據(jù)如圖右邊的椅子的視圖,工人就能制造出符合設(shè)計要求的椅子.由于三視圖不僅反映了物體的形狀,而且反映了各個方向的尺寸大小,設(shè)計人員可以把自己構(gòu)思的創(chuàng)造物用三視圖表示出來,再由工人制造出符合各種要求的機(jī)器、工具、生活用品等,因此三視圖在許
2025-01-19 10:09
【總結(jié)】?練一練:桌上放著一個圓柱和一個長方體。請說出下面的三幅圖分別是從哪個方向看到的。從左側(cè)看從正上方看從正前方看注意:從前面看到的圖是主視圖;從左面看到的圖是左視圖;從上面看到的圖是俯視圖。從上面看從左面看從
2024-11-24 16:33
【總結(jié)】1.如果直線與直線互相垂直,那么的值等于(A);(B);(C);(D).2.如圖,在正方體中,、分別是、的中點,則圖中陰影部分在平面上的正投影為3.設(shè)、、、是空間四個不同的點,在下列四個命題中,不正確的是
2025-08-05 17:45
【總結(jié)】從正面、上面和側(cè)面(左面或右面)三個不同的方向看一個物體,然后描繪三張所看到的圖,即視圖,這樣就把一個物體轉(zhuǎn)化為平面的圖形。從正面看到的圖形,稱為正視圖;從上面看到的圖形,稱為俯視圖;從側(cè)面看到的圖形,稱為側(cè)視圖,依觀看方向不同,有左視圖、右視圖。三視圖的作圖步驟主視圖方向
2024-10-18 17:52
【總結(jié)】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【總結(jié)】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19
【總結(jié)】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【總結(jié)】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【總結(jié)】廈門一中立體幾何專題一、選擇題(10×5′=50′)第1題圖,設(shè)O是正三棱錐P-ABC底面三角形ABC的中心,過O的動平面與P-ABC的三條側(cè)棱或其延長線的交點分別記為Q、R、S,則(),且最大值與最小值不等,相鄰兩側(cè)面所成的二面角的取值范圍是
2025-04-04 05:03
【總結(jié)】1.[2007年普通高等學(xué)校統(tǒng)一考試(海南、寧夏卷)數(shù)學(xué)文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學(xué)校招生全國統(tǒng)一考試(山東
2025-06-07 22:04
【總結(jié)】平面的基本性質(zhì)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機(jī)或測量用的平板儀等等……C·
2025-04-17 00:53
【總結(jié)】如何學(xué)好立體幾何立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學(xué)好立體幾何談幾點建議。一立足課本,夯實基礎(chǔ)直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的
2024-10-04 17:14
【總結(jié)】空間幾何體的三視圖(1課時)一、教學(xué)目標(biāo)1.知識與技能(1)掌握畫三視圖的基本技能(2)豐富學(xué)生的空間想象力2.過程與方法主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。3.情感態(tài)度與價值觀(1)提高學(xué)生空間想象力(2)體會三視圖的作用二、教學(xué)重點、難點重點:畫出簡單組合體的三視
2024-11-28 23:22
【總結(jié)】精品資源1.在平行六面體OABC---DEFG中(如圖),側(cè)面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設(shè)a是常數(shù)且0a1,P是EB上的點且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當(dāng)a為何值時,有最小值?解(1)所以平行六面體OABC---DEFG為
2025-04-17 07:36
【總結(jié)】《空間幾何體的三視圖》說課稿說課人:柳碩各位領(lǐng)導(dǎo)、老師:您們好!今天我說課的內(nèi)容是課標(biāo)教材人教版A版《必修2》第一章“空間幾何體”中第二節(jié)“空間幾何體的三視圖和直觀圖”的第一課時。下面我的說課將從以下幾個方面進(jìn)行闡述:一、教材分析本節(jié)課是在上一節(jié)認(rèn)識空間幾何體結(jié)構(gòu)特征的基礎(chǔ)上學(xué)習(xí)空間幾何體的表示形式。主要內(nèi)容是:介紹兩種不同的投影方法,畫空間幾何體的三視圖?! ⊥ㄟ^本節(jié)的
2025-04-17 07:49