【總結(jié)】第一篇:初中數(shù)學(xué)幾何證明題作輔助線的技巧 人說(shuō)幾何很困難,難點(diǎn)就在輔助線。初中數(shù)學(xué)幾何證明題輔助線怎么畫(huà)? 輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。圖中有角平分線,可向兩邊...
2024-10-28 22:46
【總結(jié)】無(wú)為三中八年級(jí)數(shù)學(xué)專題學(xué)習(xí)幾何證明中常見(jiàn)的“添輔助線”方法(2022年安徽)如圖,AD是△ABC的邊BC上的高,由下列條件中的某一個(gè)就能推出△ABC是等腰三角形的是_________________。(把所有正確答案的序號(hào)都填寫(xiě)在橫線上)①∠BA
2025-05-06 12:02
【總結(jié)】幾何輔助線(圖)作法探討一些幾何題的證明或求解,由原圖形分析探究,有時(shí)顯得十分復(fù)雜,若通過(guò)適當(dāng)?shù)淖儞Q,即添加適當(dāng)?shù)妮o助線(圖),將原圖形轉(zhuǎn)換成一個(gè)完整的、特殊的、簡(jiǎn)單的新圖形,則能使原問(wèn)題的本質(zhì)得到充分的顯示,通過(guò)對(duì)新圖形的分析,原問(wèn)題順利獲解。有許多初中幾何常見(jiàn)輔助線作法歌訣,下面這一套是很好的:人說(shuō)幾何很困難,難點(diǎn)就在輔助線。輔助線,如何添?把握定理和概念。還要刻苦加鉆研,找
2025-04-04 03:02
【總結(jié)】龍文教育中小學(xué)1對(duì)1課外輔導(dǎo)專家全等三角形問(wèn)題中常見(jiàn)的輔助線的作法巧添輔助線一——倍長(zhǎng)中線【夯實(shí)基礎(chǔ)】例:中,AD是的平分線,且BD=CD,求證AB=AC方法1:作DE⊥AB于E,作DF⊥AC于F,證明二次全等方法2:輔助線同上,利用面積方法
2025-04-16 23:10
【總結(jié)】五種輔助線助你證全等姚全剛在證明三角形全等時(shí)有時(shí)需添加輔助線,對(duì)學(xué)習(xí)幾何證明不久的學(xué)生而言往往是難點(diǎn).下面介紹證明全等時(shí)常見(jiàn)的五種輔助線,供同學(xué)們學(xué)習(xí)時(shí)參考.一、截長(zhǎng)補(bǔ)短一般地,當(dāng)所證結(jié)論為線段的和、差關(guān)系,且這兩條線段不在同一直線上時(shí),通??梢钥紤]用截長(zhǎng)補(bǔ)短的辦法:或在長(zhǎng)線段上截取一部分使之與短線段相等;或?qū)⒍叹€段延長(zhǎng)使其與長(zhǎng)線段相等.例1.如圖1,在△ABC中,∠ABC
2025-06-19 22:43
【總結(jié)】輔助線的作法正確熟練地掌握輔助線的作法和規(guī)律,也是迅速解題的關(guān)鍵,如何準(zhǔn)確地作出需要的輔助線,簡(jiǎn)單介紹幾種方法:方法一:從已知出發(fā)作出輔助線:DABCEFMN例1.已知:在△ABC中,AD是BC邊的中線,E是AD的中點(diǎn),F(xiàn)是BE延長(zhǎng)線與AC的交點(diǎn),求證:AF=分析:題設(shè)中含有D是BC中點(diǎn),E是AD中點(diǎn),由此可以聯(lián)想到三角形中與邊中點(diǎn)有密切聯(lián)
2025-06-18 13:03
【總結(jié)】常見(jiàn)的輔助線的作法“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形:(1)可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,(2)可以在角平分線上的一點(diǎn)作該角平分線的垂線與角的兩邊相交,形成一對(duì)全等三角形。(3)可以在該角的兩邊上,距離角的頂點(diǎn)相等長(zhǎng)度的位置上截取二點(diǎn),然后從這兩點(diǎn)再向角平分線上的某點(diǎn)作邊線,構(gòu)造一
2025-03-24 02:14
【總結(jié)】第一講注意添加平行線證題在同一平面內(nèi),,,若能依據(jù)證題的需要,添加恰當(dāng)?shù)钠叫芯€,則能使證明順暢、簡(jiǎn)潔.添加平行線證題,一般有如下四種情況.1為了改變角的位置大家知道,兩條平行直線被第三條直線所截,同位角相等
2025-03-25 01:21
【總結(jié)】全等三角形問(wèn)題中常見(jiàn)的輔助線的作法(有答案)總論:全等三角形問(wèn)題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個(gè)角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。三角形中兩中點(diǎn),連
2025-06-16 21:30
【總結(jié)】全等三角形證明方法中輔助線做法1、截長(zhǎng)補(bǔ)短通過(guò)添加輔助線利用截長(zhǎng)補(bǔ)短,從而達(dá)到改變線段之間的長(zhǎng)短,達(dá)到構(gòu)造全等三角形的條件1.如圖1,在△ABC中,∠ABC=60°,AD、CE分別平分∠BAC、∠ACB.求證:AC=AE+CD. 分析:要證AC=AE+CD,AE、CD不在同一直線上.故在AC上截取AF=AE,則只要證明
2025-03-24 07:41
【總結(jié)】幾何證明-常用輔助線(一)中線倍長(zhǎng)法:例1、求證:三角形一邊上的中線小于其他兩邊和的一半。已知:如圖,△ABC中,AD是BC邊上的中線,求證:AD﹤(AB+AC)分析:要證明AD﹤(AB+AC),就是證明AB+AC2AD,也就是證明兩條線段之和大于第三條線段,而我們只能用“三角形兩邊之和大于第三邊”,但題中的三條線段
2025-06-25 21:39
【總結(jié)】由角平分線想到的輔助線角平分線具有兩條性質(zhì):a、對(duì)稱性;b、角平分線上的點(diǎn)到角兩邊的距離相等。對(duì)于有角平分線的輔助線的作法,一般有兩種。①?gòu)慕瞧椒志€上一點(diǎn)向兩邊作垂線;②利用角平分線,構(gòu)造對(duì)稱圖形(如作法是在一側(cè)的長(zhǎng)邊上截取短邊)。通常情況下,出現(xiàn)了直角或是垂直等條件時(shí),一般考慮作垂線;其它情況下考慮構(gòu)造對(duì)稱圖形。至于選取哪種方法,要結(jié)合題目圖形和已知條件。與角有關(guān)的輔助線
2025-03-25 03:58
【總結(jié)】數(shù)學(xué)專題——三角形中的常用輔助線課程解讀一、學(xué)習(xí)目標(biāo):歸納、掌握三角形中的常見(jiàn)輔助線?二、重點(diǎn)、難點(diǎn):1、全等三角形的常見(jiàn)輔助線的添加方法。2、掌握全等三角形的輔助線的添加方法并提高解決實(shí)際問(wèn)題的能力。?????三、考點(diǎn)分析:全等三角形是初中數(shù)學(xué)中的重要內(nèi)容之一,是今后學(xué)習(xí)其他知識(shí)的基礎(chǔ)。判斷
2025-03-24 12:38