【總結】解三角形復習主干知識梳理1.兩角和與差的正弦、余弦、正切公式(1)sin(α±β)=sinαcosβ±cosαsinβ.(2)cos(α±β)=cosαcosβ?sinαsinβ.(3)t
2025-08-05 16:02
【總結】立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版1第五章平面向量第講(第一課時)立足教育開創(chuàng)未來·高中總復習(第一輪)·理科數(shù)學·全國版2考點搜索●關于三角形邊、角的主要關系式
2025-08-11 14:44
【總結】第7講解三角形第7講│云覽高考[云覽高考]考點統(tǒng)計題型(頻率)考例(難度)考點1正弦定理與余弦定理選擇(1)解答(1)2022湖北卷8(B),2011湖北卷16(B)考點2三角形的面積問題0考點3解三角形的實際應
2025-08-05 17:39
【總結】第二十七章相似相似三角形應用舉例(2)一、新課引入利用相似可以解決生活中的問題,計量一些無法直接測量的物體的長度.解題的關鍵在于構建相似三角形.例6左、右并排的兩棵大樹的高分別是AB=8m和CD=12m,兩樹根部的距離BD=51.6m的人沿著正對這兩棵樹的一條水平直路L從左向
2025-11-12 02:30
【總結】相似三角形的識別方法(3)兩個角對應相等的兩三角形相似(2)兩邊對應成比例且夾角相等的兩三角形相似(1)三邊對應成比例的兩三角形相似平行相似復習相似三角形的性質6、相似三角形周長的比等于相似比5、相似三角形對應角平分線的比等于相似比
2025-08-05 00:31
【總結】樂山大佛新課導入世界上最高的樹——紅杉世界上最高的樓——臺北101大樓怎樣測量這些非常高大物體的高度?世界上最寬的河——亞馬孫河怎樣測量河寬?利用三角形相似可以解決一些不能直接測量的物體的長度的問題教學目標?會應用相似三角形性質、判定解決實際問題.知識與能力?通
【總結】課題:解斜三角形講解:陳功課型:復習課1、復習初中所學的有關三角形的知識:①A+B+C=π②b+ca,a+cb,a+bc③|b–c|a,|a–c|b,|a–
2025-08-05 16:23
【總結】第七節(jié)解三角形考綱點擊掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題.熱點提示、余弦定理進行邊角轉化,進而進行恒等變換解決問題.、余弦定理和面積公式的同時,考查三角恒等變換,這是高考的熱點.,是高考命
2025-11-01 07:28
【總結】解直角三角形的應用(2)在視線與水平線所成的角中,視線在水平線的上方的角叫做仰角。視線在水平線下方的角叫做俯角。仰角與俯角都是視線與水平線所成的角。一、知識回顧鉛垂線俯角仰角水平線視線視線鞏固練習1、如圖,某景區(qū)山的高度為500米,在山角的大門A處測得C處的仰角為45
2025-05-05 05:36
【總結】第十講解三角形ABCabc△ABC中:A+B+C=?(1)(2)22CBA????22C???(3)BAbaBAsinsin?????RCcBbAa2sinsinsin???正弦定理:??
2025-08-05 17:10
【總結】例題1、如圖所示的工件叫做燕尾槽,它的橫斷面是一個等腰梯形,∠B叫做燕尾角,AD叫做外口,BC叫做里口,AE叫做燕尾槽深度.已知AD長180毫米,BC長300毫米,AE長70毫米,那么燕尾角B的大小是多少(精確到1,)?例題分析解:根據(jù)題意,可知BE=(BC—AD)=(30
2025-07-25 15:57
【總結】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2025-10-31 22:05
【總結】相似三角形應用舉例(1)胡夫金字塔是埃及現(xiàn)存規(guī)模最大的金字塔,被喻為“世界古代七大奇觀之一”。塔的4個斜面正對東南西北四個方向,塔基呈正方形,每邊長約230多米。據(jù)考證,為建成大金字塔,共動用了10萬人花了20年時間.原高146.59米,但由于經(jīng)過幾千年的風吹雨打,頂端被風化吹蝕.所以高度有所降低。埃及著名的考古專家穆
2025-11-14 10:49
【總結】要點疑點考點課熱身能力思維方法延伸拓展誤解分析第6課時三角形中的有關問題前要點要點穧疑點疑點穧考點考點1.正弦定理:(1)定理:a/sinA=b/sinB=c/sinC=2R(其中R為△ABC外接圓的半徑
2025-10-31 01:52
【總結】的應用解三角形問題是三角學的基本問題之一。什么是三角學?三角學來自希臘文“三角形”和“測量”。最初的理解是解三角形的計算,后來,三角學才被看作包括三角函數(shù)和解三角形兩部分內容的一門數(shù)學分學科。解三角形的方法在度量工件、測量距離和高度及工程建筑等生產實際中,有廣泛的應用,在物理學中,有關向量的計算也要用到解三角形的方法。
2025-11-01 01:32