【總結(jié)】上頁下頁返回§二元函數(shù)的偏導(dǎo)數(shù)與全微分一、偏導(dǎo)數(shù)二、高階偏導(dǎo)數(shù)三、全微分上頁下頁返回一、偏導(dǎo)數(shù)定義1設(shè)函數(shù)(,)zfxy?在點00(,)xy的某一鄰域內(nèi)有定義,當(dāng)y固定在0y而x在0x處有增量x?時,相應(yīng)地函數(shù)有增量
2025-07-25 16:45
【總結(jié)】導(dǎo)數(shù)的定義0()yfxx?設(shè)函數(shù)在點的某定義:個鄰域內(nèi)0,(xxx?有定義當(dāng)自變量在處取得增量點0),xxy??仍在該鄰域內(nèi)時相應(yīng)地函數(shù)取得00()();yfxxfxyx???????增量如果與之0,()xyfx?
2025-08-05 04:41
【總結(jié)】(AdvancedMathematics)?CSMyzx0?P導(dǎo)數(shù)與微分2習(xí)題課(Ⅲ)高階導(dǎo)數(shù)與微分導(dǎo)數(shù)與微分3??????????????????????導(dǎo)數(shù)定義幾何意義可導(dǎo)性與連續(xù)性的
2025-05-05 22:04
【總結(jié)】返回后頁前頁§4高階導(dǎo)數(shù)當(dāng)我們研究導(dǎo)函數(shù)的變化率時就產(chǎn)生了高階導(dǎo)數(shù).如物體運動規(guī)律為,()sst?它的運動速度是,而速度在時刻()vst??()()().atvtst?????t的變化率就是物體在時刻的加速度t返回返回
2025-08-02 10:51
【總結(jié)】1.導(dǎo)數(shù)的概念2.導(dǎo)數(shù)的運算3.隱函數(shù)及參數(shù)方程的函數(shù)的求導(dǎo)法則4.高階導(dǎo)數(shù)5.微分第二章導(dǎo)數(shù)與微分1.變速直線運動的瞬時速度??tSS?設(shè)有一質(zhì)點作變速直線運動,其運動方程為§1導(dǎo)數(shù)的概念一.引例求:質(zhì)點在??0tv時刻的瞬時速
2025-07-24 19:55
【總結(jié)】§3隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)一、隱函數(shù)的求導(dǎo)法則二、對數(shù)求導(dǎo)法則三、參數(shù)方程求導(dǎo)法則一、隱函數(shù)的導(dǎo)數(shù).)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化:若方程
2025-07-24 19:52
【總結(jié)】高職數(shù)學(xué)wele第三章導(dǎo)數(shù)與微分§3-2函數(shù)的求導(dǎo)法則§3-3微分§3-1導(dǎo)數(shù)的概念本章小結(jié)與提高在專業(yè)課許多的問題中,需要研究各種變量的變化速度。如物體的運動速度,電流變化,密度變化,熱量變化,化學(xué)反應(yīng)速度及生物繁殖率等,這些
2024-10-05 00:44
【總結(jié)】第八章多元函數(shù)微分學(xué)教案編寫:張理電子制作:張理第八章多元函數(shù)微分學(xué)本章學(xué)習(xí)要求:1.理解多元函數(shù)的概念。熟悉多元函數(shù)的“點函數(shù)”表示法。2.知道二元函數(shù)的極限、連續(xù)性等概念,以及有界閉域上連續(xù)函數(shù)的性質(zhì)。會求二元函數(shù)的極限。知道極限的“點函數(shù)”表示法。3.理解二元和三元函數(shù)的偏導(dǎo)數(shù)、全導(dǎo)數(shù)、全微分等概念。了解
2024-08-25 01:37
【總結(jié)】第二章導(dǎo)數(shù)與微分?導(dǎo)數(shù)的概念?函數(shù)的和、差、積、商的求導(dǎo)法則?復(fù)合函數(shù)的求導(dǎo)法則?隱函數(shù)的導(dǎo)數(shù)?初等函數(shù)的導(dǎo)數(shù)?﹡導(dǎo)數(shù)的經(jīng)濟定義?高階導(dǎo)數(shù)?函數(shù)的微分下頁1.導(dǎo)數(shù)的定義2.導(dǎo)數(shù)的幾何意義3.可導(dǎo)與連續(xù)的關(guān)系首頁上頁下頁
2024-09-28 14:11
【總結(jié)】第三單元微分中值定理與導(dǎo)數(shù)應(yīng)用一、填空題1、__________。2、函數(shù)在區(qū)間______________單調(diào)增。3、函數(shù)的極大值是____________。4、曲線在區(qū)間__________是凸的。5、函數(shù)在處的階泰勒多項式是_________。6、曲線的拐點坐標是_________。7、若在含的(其中)內(nèi)恒有二階負的導(dǎo)數(shù),且_______,則是在上的
2024-08-26 11:37
【總結(jié)】第二章習(xí)題2—1一、填空題=2x+b是拋物線y=x2在某點處的法線,則b=__________.,其上升高度與時間的關(guān)系為s(t)=3t-gt2,問物體在時間間隔[t0,t0+]的平均速度________,t0時刻的即時速度________,到達最高點的時刻______.二、選擇題1.設(shè)
2025-07-23 11:16
【總結(jié)】偏導(dǎo)數(shù)與全微分習(xí)題1.設(shè),求。2.習(xí)題817題。3.設(shè),考察f(x,y)在點(0,0)的偏導(dǎo)數(shù)。4.考察在點(0,0)處的可微性。5.證明函數(shù)在點(0,0)連續(xù)且偏導(dǎo)數(shù)存在,但偏導(dǎo)數(shù)在(0,0)不連續(xù),而f(x,y)在點(0,0)可微。1.設(shè),求。∴。
2025-07-24 22:32
【總結(jié)】《高等數(shù)學(xué)》Ⅱ—Ⅰ課程教案第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用本章內(nèi)容是上一章的延續(xù),主要是利用導(dǎo)數(shù)與微分這一方法來分析和研究函數(shù)的性質(zhì)及其圖形和各種形態(tài),這一切的理論基礎(chǔ)即為在微分學(xué)中占有重要地位的幾個微分中值定理。在分析、論證過程中,中值定理有著廣泛的應(yīng)用。一、教學(xué)目標與基本要求(一)知識、拉格朗日中值定理、柯西中值定理的條件和結(jié)論;;,sin(x),cos(
2025-06-24 23:00
【總結(jié)】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-05-12 21:33
2025-08-04 14:16