【總結(jié)】第三單元微分中值定理與導(dǎo)數(shù)應(yīng)用一、填空題1、__________。2、函數(shù)在區(qū)間______________單調(diào)增。3、函數(shù)的極大值是____________。4、曲線在區(qū)間__________是凸的。5、函數(shù)在處的階泰勒多項(xiàng)式是_________。6、曲線的拐點(diǎn)坐標(biāo)是_________。7、若在含的(其中)內(nèi)恒有二階負(fù)的導(dǎo)數(shù),且_______,則是在上的
2025-08-17 11:37
【總結(jié)】第二章習(xí)題2—1一、填空題=2x+b是拋物線y=x2在某點(diǎn)處的法線,則b=__________.,其上升高度與時間的關(guān)系為s(t)=3t-gt2,問物體在時間間隔[t0,t0+]的平均速度________,t0時刻的即時速度________,到達(dá)最高點(diǎn)的時刻______.二、選擇題1.設(shè)
2025-07-23 11:16
【總結(jié)】偏導(dǎo)數(shù)與全微分習(xí)題1.設(shè),求。2.習(xí)題817題。3.設(shè),考察f(x,y)在點(diǎn)(0,0)的偏導(dǎo)數(shù)。4.考察在點(diǎn)(0,0)處的可微性。5.證明函數(shù)在點(diǎn)(0,0)連續(xù)且偏導(dǎo)數(shù)存在,但偏導(dǎo)數(shù)在(0,0)不連續(xù),而f(x,y)在點(diǎn)(0,0)可微。1.設(shè),求?!?。
2025-07-24 22:32
【總結(jié)】《高等數(shù)學(xué)》Ⅱ—Ⅰ課程教案第三章微分中值定理與導(dǎo)數(shù)的應(yīng)用本章內(nèi)容是上一章的延續(xù),主要是利用導(dǎo)數(shù)與微分這一方法來分析和研究函數(shù)的性質(zhì)及其圖形和各種形態(tài),這一切的理論基礎(chǔ)即為在微分學(xué)中占有重要地位的幾個微分中值定理。在分析、論證過程中,中值定理有著廣泛的應(yīng)用。一、教學(xué)目標(biāo)與基本要求(一)知識、拉格朗日中值定理、柯西中值定理的條件和結(jié)論;;,sin(x),cos(
2025-06-24 23:00
【總結(jié)】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運(yùn)算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-05-12 21:33
【總結(jié)】第八章多元函數(shù)微分學(xué)教案編寫:張理電子制作:張理第八章多元函數(shù)微分學(xué)本章學(xué)習(xí)要求:1.理解多元函數(shù)的概念。熟悉多元函數(shù)的“點(diǎn)函數(shù)”表示法。2.知道二元函數(shù)的極限、連續(xù)性等概念,以及有界閉域上連續(xù)函數(shù)的性質(zhì)。會求二元函數(shù)的極限。知道極限的“點(diǎn)函數(shù)”表示法。3.理解二元和三元函數(shù)的偏導(dǎo)數(shù)、全導(dǎo)數(shù)、全微分等概念。了解
2025-08-04 14:16
【總結(jié)】返回后頁前頁導(dǎo)數(shù)是微分學(xué)的核心概念,是研究函數(shù)§1導(dǎo)數(shù)的概念一、導(dǎo)數(shù)的概念化率”,就離不開導(dǎo)數(shù).三、導(dǎo)數(shù)的幾何意義二、導(dǎo)函數(shù)態(tài)的有力工具.無論何種學(xué)科,只要涉及“變與自變量關(guān)系的產(chǎn)物,又是深刻研究函數(shù)性返回返回后頁前頁一、導(dǎo)數(shù)的
2025-08-12 19:14
【總結(jié)】第8節(jié)高階導(dǎo)數(shù)與高階微分高階導(dǎo)數(shù)的運(yùn)算法則).()())()(()()()(xvxuxvxunnn??????????????)()()1(1)()0()())()((knkknnnnnvuCvuCvuxvxu.)!(!!!)1()1()0()0(knknkknnnCvvuukn?????????,,1.2.
2025-07-20 05:25
【總結(jié)】導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::xxxxxx??????00,)()(00xfxxfy?????)()()(lim)()()(limlim)(000000導(dǎo)函數(shù)一般地:??????????????????????xxfxxfxf
2025-05-15 21:38
【總結(jié)】§3.53.5.1高階導(dǎo)數(shù)與高階微分的概念機(jī)動目錄上頁下頁返回結(jié)束高階導(dǎo)數(shù)與高階微分第3章3.5.2高階導(dǎo)數(shù)與高階微分的運(yùn)算法則高階導(dǎo)數(shù)與高階微分的概念??sst?ddsvt?vs??其瞬時為速度為:即其加
2025-05-10 12:39
【總結(jié)】推廣一元函數(shù)微分學(xué)二元函數(shù)微分學(xué)注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個條件的一切點(diǎn)構(gòu)成的集合。平面點(diǎn)集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點(diǎn)集稱為平面區(qū)域,通常記作D。0xy1
2025-07-26 01:41
【總結(jié)】導(dǎo)數(shù)的應(yīng)用(文科)[課前導(dǎo)引][課前導(dǎo)引]1.D1.C0.B2.A)(,22:.223?????的值為數(shù)則整都是銳角任意點(diǎn)處的切線的傾角上若曲線aaxaxxyC[課前導(dǎo)引]1.D1.C
2024-11-19 02:58
【總結(jié)】導(dǎo)數(shù)的應(yīng)用(理科)[課前導(dǎo)引][課前導(dǎo)引]1.曲線f(x)=x3+x?2在點(diǎn)P處的切線平行于直線y=4x?1,則點(diǎn)P的坐標(biāo)為()A.(1,0)B.(2,8)C.(1,0)或(?1,?4)D.(2,8)或(?1,4)[課前導(dǎo)引]
【總結(jié)】高等數(shù)學(xué)練習(xí)題第二章導(dǎo)數(shù)與微分第一節(jié)導(dǎo)數(shù)概念一.填空題,則=2.若存在,=.=.,則(米),則物體在秒時的瞬時速度為5(米/秒)(,)處的切線方程為,法線方程為?或?表示在一點(diǎn)處函數(shù)極限存在、連續(xù)、可導(dǎo)、可微之間的關(guān)系,
2025-06-18 08:10
【總結(jié)】DDY整理由方程所確定的與間的函數(shù)關(guān)系稱為隱函數(shù)。隱函數(shù)求導(dǎo)法:兩邊對求導(dǎo)(是的函數(shù))得到一個關(guān)于的方程,解出即可。例20求由方程所確定的隱函數(shù)的導(dǎo)數(shù)。解方程兩邊對求導(dǎo)例21求由方程所確定的隱函數(shù)的導(dǎo)數(shù)并求。解方程兩邊對求導(dǎo)?當(dāng)時,由方程解出例22設(shè)求。解原方程為等號兩邊
2025-07-22 20:24