【總結】(一)【學習目標】1.熟練掌握橢圓的范圍,對稱性,頂點等簡單幾何性質奎屯王新敞新疆2.掌握標準方程中cba,,的幾何意義,以及ecba,,,的相互關系奎屯王新敞新疆3.理解、掌握坐標法中根據(jù)曲線的方程研究曲線的幾何性質的一般方法奎屯王新敞新疆【自主學習】yx,2.的點?橢圓的長軸與短軸是怎樣
2024-12-05 06:41
【總結】圓錐曲線與方程第二章§1橢圓橢圓的簡單幾何性質第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習.2.利用橢圓的簡單幾何性質解決一些簡單問題.橢圓的簡單幾何性質1.觀察橢圓的圖形可以發(fā)現(xiàn),橢圓是_____對稱圖形,也是_____
2024-11-16 23:27
【總結】橢圓的簡單幾何性質(二)【學習目標】1.掌握橢圓范圍、對稱性、頂點、離心率、準線方程等幾何性質;2.能利用橢圓的幾何性質解決相關的問題.【自主檢測】1.求直線320xy???與橢圓221164xy??的交點坐標.2.已知橢圓22149xy??,一組平行直線的斜率是32,問這組直線何時與橢圓相交?
【總結】雙曲線的幾何性質課題第1課時計劃上課日期:教學目標知識與技能1.了解雙曲線的簡單幾何性質,如范圍、對稱性、頂點、漸近線和離心率等.2.能用雙曲線的簡單幾何性質解決一些簡單問題.過程與方法情感態(tài)度與價值觀教學重難點雙曲線的幾何性質及初步運用教
2024-11-20 00:30
【總結】第一篇:高中數(shù)學幾何證明練習 1、如圖所示,在RtDABC中,DC=900,點D在AB上,以BD為直徑的圓恰好與AC相切于點E,若 AD=23,AE=6,則EC=_______ 2、如圖,已知圓...
2024-11-16 23:31
【總結】第六講立體幾何新題型【考點透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標的概念,掌握空間向量的坐標運算.③掌握空間向量的數(shù)量積的定義及其性質,掌握用直角坐標計算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-05 18:17
【總結】華夏學校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14
【總結】新課標立體幾何常考證明題匯總1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-04-04 05:07
【總結】高中課程復習專題——數(shù)學立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉體:把一個平面圖形繞它所在的平面內的一條定直線旋轉形成了封閉幾何體。其中,這條直線稱為
【總結】解析幾何題型求參數(shù)的值是高考題中的常見題型之一,其解法為從曲線的性質入手,構造方程解之.例1.若拋物線的焦點與橢圓的右焦點重合,則的值為()A.B.C.D.考查意圖:本題主要考查拋物線、橢圓的標準方程和拋物線、橢圓的基本幾何性質.解答過程:橢圓的右焦點為(2,0),所以拋物線的焦點為(2,0),則
2025-08-05 16:59
【總結】APCBOEF16.如圖,已知⊙O所在的平面,是⊙O的直徑,,C是⊙O上一點,且,與⊙O所在的平面成角,是中點.F為PB中點.(1)求證:;(2)求證:;(3)求三棱錐B-PAC的體積.17.如圖,四面體ABCD中,O、E分別是BD、BC的中點, (1)求證:平面BCD; (2)求異面直線AB與CD所成角的余弦值;
2025-01-14 11:10
【總結】復習思考?橢圓的定義、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222????bab
2025-07-25 15:26
【總結】題目第八章圓錐曲線橢圓高考要求掌握橢圓的定義、標準方程和橢圓的簡單幾何性質,了解橢圓的參數(shù)方程知識點歸納:①平面內一個動點到兩個定點F1、F2的距離之和等于常數(shù)(大于|F1F2|,即),這個動點的軌跡叫橢圓(這兩個定點叫焦點).②點M與一個定點的距離和它到一條定直線的距離的比是常數(shù)e(0e1),則P點的軌跡是橢圓,如下圖所示:(1)|PF1|
2025-06-07 23:27
【總結】1/41橢圓標準方程典型例題例1已知橢圓06322???mymx的一個焦點為(0,2)求m的值.分析:把橢圓的方程化為標準方程,由2?c,根據(jù)關系222cba??可求出m的值.解:方程變形為12622??myx.因為焦點在y軸上,所以62?m,解得3?m.又2?c,所以22
2025-08-02 10:18
【總結】拋物線的幾何性質課題第1課時計劃上課日期:教學目標知識與技能掌握拋物線的幾何性質,能應用拋物線的幾何性質解決問題過程與方法情感態(tài)度與價值觀教學重難點拋物線的幾何性質.教學流程\內容\板書關鍵點撥加工潤色一、復習回顧拋物線的標