【總結(jié)】反函數(shù)在高考中常見題型分析高考對反函數(shù)要求是:理解掌握反函數(shù)的概念,明確反函數(shù)意義、常見符號、求反函數(shù)方法、,,供復(fù)習(xí)時參考.1、求原函數(shù)的定義域例1(92高考上海卷)函數(shù)反函數(shù)是,求定義域解:原出數(shù)定義域是反函數(shù)值域,的值域是,故函數(shù)定義域是2、求反函數(shù)定義域例2、函數(shù)f(x+1)=log(x+2)+x+2x+3的定義域,求反函數(shù)定義域解:f
2025-04-17 00:07
【總結(jié)】例說二項式定理的常見題型及解法二項式定理的問題相對較獨立,題型繁多,解法靈活且比較難掌握。二項式定理既是排列組合的直接應(yīng)用,又與概率理論中的三大概率分布之一的二項分布有著密切聯(lián)系。二項式定理在每年的高考中基本上都有考到,題型多為選擇題,填空題,偶爾也會有大題出現(xiàn)。本文將針對高考試題中常見的二項式定理題目類型一一分析如下,希望能夠起到拋磚引玉的作用。一、求
2025-03-24 07:06
【總結(jié)】常見抽象函數(shù)解法 1、線性函數(shù)型抽象函數(shù)線性函數(shù)型抽象函數(shù),是由線性函數(shù)抽象而得的函數(shù)。例1、已知函數(shù)f(x)對任意實數(shù)x,y,均有f(x+y)=f(x)+f(y),且當(dāng)x>0時,f(x)>0,f(-1)=-2,求f(x)在區(qū)間[-2,1]上的值域。例2、已知函數(shù)f(x)對任意,滿足條件f(x)+f(y)=2+f(x+y),且當(dāng)x>0時,f(x)>2,f(3)=5,求不等式
2025-01-14 00:48
【總結(jié)】抽象函數(shù)模型模型一(正比例函數(shù)型):f(x±y)=f(x)±f(y)例1、已知函數(shù)對任意實數(shù)x,y,均有f(x+y)=f(x)+f(y),且當(dāng)x0時f(x)0,f(-1)=-2,求在區(qū)間[-2,1]上的值域。模型二(一次函數(shù)型):f(x+y)=f(x)+f(y)-c例2、
2025-08-05 08:17
【總結(jié)】抽象函數(shù)的周期抽象函數(shù)的周期沒有具體公式,它需要掌握一定的規(guī)律,記住一些抽象函數(shù)的格式。本文列出幾種常見的抽象函數(shù)的周期類型,供大家參考(以下x取定義域內(nèi)的任意值且a、b、T為非零常數(shù),a≠b)。1.型:的周期為T。證明:對x取定義域內(nèi)的每一個值時,都有,則為周期函數(shù),T叫函數(shù)的周期。2.型:的周期為。證明:。3.型:的周期為2a。證明:例.設(shè)
2025-06-18 13:14
【總結(jié)】抽象函數(shù)與具體函數(shù)值域的求法例1已知函數(shù)f(x)對任意實數(shù)x、y均有f(x+y)=f(x)+f(y),且當(dāng)x0時,f(x)0,f(-1)=-2求f(x)在區(qū)間[-2,1]上的值域.分析:先證明函數(shù)f(x)在R上是增函數(shù)(注意到f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1));再根據(jù)區(qū)間求其值域.例2已知函數(shù)f(x)對任意實數(shù)x、y均有f
2025-05-16 04:53
【總結(jié)】復(fù)合函數(shù)、抽象函數(shù)、函數(shù)的圖像一、復(fù)合函數(shù)設(shè)y=f(u),uB,u=g(x),xA,通過變量u,得到y(tǒng)關(guān)于x的函數(shù),那么稱這個函數(shù)為函數(shù)y=f(u)和u=g(x)的復(fù)合函數(shù),記作y=f(g(x)),其中y=f(u)叫做外函數(shù),u=g(x)叫做內(nèi)函數(shù),u稱為中間變量,它的取值范圍是g(x)的值域的子集。1、復(fù)合函數(shù)的定義域:要看清是已知f(x)的定義域求f[g(x)]的定義域,
2025-04-17 13:06
【總結(jié)】習(xí)題精選精講含有函數(shù)記號“”有關(guān)問題解法由于函數(shù)概念比較抽象,學(xué)生對解有關(guān)函數(shù)記號的問題感到困難,學(xué)好這部分知識,能加深學(xué)生對函數(shù)概念的理解,更好地掌握函數(shù)的性質(zhì),培養(yǎng)靈活性;提高解題能力,優(yōu)化學(xué)生數(shù)學(xué)思維素質(zhì)?,F(xiàn)將常見解法及意義總結(jié)如下:一、求表達式::即用中間變量表示原自變量的代數(shù)式,從而求出,這也是證某些公式或等式常用的方法,此法解培養(yǎng)學(xué)生的靈活性及變形能力。例1:
2025-03-25 02:32
【總結(jié)】第四章過程抽象-函數(shù)本章內(nèi)容?子程序?C++的函數(shù)?變量的局部性和變量的生存期?函數(shù)的嵌套調(diào)用?遞歸函數(shù)?宏定義?內(nèi)聯(lián)函數(shù)?帶缺省值的形式參數(shù)?函數(shù)名重載基于過程抽象的程序設(shè)計?人們在設(shè)計一個復(fù)雜的程序時,經(jīng)常會用到功能分解和復(fù)合兩種手段:
2025-04-29 03:59
【總結(jié)】抽象函數(shù)的定義域總結(jié)解題模板,求復(fù)合函數(shù)的定義域由復(fù)合函數(shù)的定義我們可知,要構(gòu)成復(fù)合函數(shù),則內(nèi)層函數(shù)的值域必須包含于外層函數(shù)的定義域之中,因此可得其方法為:若的定義域為,求出中的解的范圍,即為的定義域。,求的定義域方法是:若的定義域為,則由確定的范圍即為的定義域。,求的定義域結(jié)合以上一、二兩類定義域的求法,我們可以得到此類解法為:可先由定義域求得
2025-05-16 05:08
【總結(jié)】例析抽象函數(shù)周期的求法抽象函數(shù)周期問題是近年來高考及各地模擬試題中高頻出現(xiàn)的問題,其周期求法能有效考查學(xué)生的邏輯思維能力和代數(shù)推理能力,對培養(yǎng)學(xué)生思維品質(zhì)大有幫助。下面舉例說明求周期的常用方法及技巧。一、僅含抽象關(guān)系式的周期函數(shù)例1若存在常數(shù)m0,使函數(shù)f(x)滿足,則的一個正周期是____________。解:設(shè),則,依題意有,由周期函數(shù)的定義,是的一個周期
2025-06-20 03:53
【總結(jié)】三樂教育名師點拔中心學(xué)生姓名:家長簽名第1頁(共46頁) 一次函數(shù)知識點總結(jié)與常見題型基本概念1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程
2025-06-22 05:44
【總結(jié)】高二文科黃興班函數(shù)部分專項練習(xí)12011-03-31抽象函數(shù)專題訓(xùn)練1線性函數(shù)型抽象函數(shù)【例題1】已知函數(shù)對任意實數(shù),均有,且當(dāng)時,求在區(qū)間上的值域。【例題2】已知函數(shù)對任意實數(shù),均有,且當(dāng)時,求不等式的解。2指數(shù)函數(shù)型抽象函數(shù)【例題3】已
2025-07-23 11:20
【總結(jié)】賦值法解答抽象函數(shù)問題的賦值技巧與策略函數(shù)是高中數(shù)學(xué)的重要內(nèi)容,,,:①令x=…、﹣2、﹣1、0、1、2…等特殊值求抽象函數(shù)的函數(shù)值;②令x=x2,y=x1或y=,且x1x2,判定抽象函數(shù)的單調(diào)性;③令y=﹣x,判定抽象函數(shù)的奇偶性;④換x為x+T,確定抽象函數(shù)的周期;⑤用x=+.例1定義在(﹣1,1)上的函數(shù)f(x),對任意的x,y∈(﹣1,1)都有f(x)+f
2025-05-16 08:03
【總結(jié)】專題一抽象函數(shù)奇偶性的判定及應(yīng)用探究一:抽象函數(shù)的單調(diào)性和奇偶性問題抽象函數(shù)的具體模型類型一:抽象函數(shù)證明函數(shù)的奇偶性問題①,滿足,如何證明為奇函數(shù)?②,滿足,如何證明為偶函數(shù)?類型二:抽象函數(shù)證明函數(shù)的單調(diào)性問題①若且、證明其單調(diào)性②若、證
2025-06-22 16:49