【總結】第六節(jié)復習目錄上頁下頁返回結束二、空間曲線的切線與法平面三、曲面的切平面與法線多元函數(shù)微分學的幾何應用第九章一、一元向量值函數(shù)及其導數(shù)一、一元向量值函數(shù)及其導數(shù)定義:設數(shù)集,則稱映射D?R:nfD?R為一元向量值函數(shù),通常記為:(),
2025-08-05 15:27
【總結】多元函數(shù)微分學的幾何應用1空間曲線的切線與法平面曲面的切平面與法線多元函數(shù)微分學的幾何應用全微分的幾何意義小結思考題作業(yè)第8章多元函數(shù)微分法及其應用多元函數(shù)微分學的幾何應用2設空間曲線的方程)1()()()()(??????????
2025-02-13 15:34
【總結】課時教案授課章節(jié)及題目偏導數(shù)與全微分(1)授課時間周二第3、4節(jié)課次1學時2教學目標與要求1、了解二元函數(shù)偏導數(shù)的定義2、掌握求二元函數(shù)偏導數(shù)的方法教學重點與難點教學重點:二元函數(shù)偏導數(shù)的求法教學難點:二元函數(shù)偏導數(shù)的定義教學用具無教學過程環(huán)節(jié)、時間授課內容教學方法課程導入(5分
2025-08-05 01:51
【總結】偏導數(shù)與全微分習題1.設,求。2.習題817題。3.設,考察f(x,y)在點(0,0)的偏導數(shù)。4.考察在點(0,0)處的可微性。5.證明函數(shù)在點(0,0)連續(xù)且偏導數(shù)存在,但偏導數(shù)在(0,0)不連續(xù),而f(x,y)在點(0,0)可微。1.設,求?!唷?/span>
2025-07-24 22:32
【總結】第八章第三節(jié)機動目錄上頁下頁返回結束二、多變量函數(shù)的偏導數(shù)三、高階偏導數(shù)多變量函數(shù)的微分和偏導數(shù)第八章一、多變量函數(shù)的微分一、多變量函數(shù)的微分定義設在的鄰域中有定義,
2025-07-25 18:36
【總結】推廣一元函數(shù)微分學二元函數(shù)微分學注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個條件的一切點構成的集合。平面點集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點集稱為平面區(qū)域,通常記作D。0xy1
2025-07-26 01:41
【總結】瀘州實驗中學明楊1.導數(shù)的幾何意義(1)切線:如圖,當點Pn(xn,f(xn))(n=1,2,3,4,…)沿著曲線f(x)趨近于點P(x0,f(x0))時,割線PPn趨近于確定的位置,這個確定位置的直線PT稱為點P處的.顯然割線P
2025-07-18 22:34
【總結】主要內容典型例題第八章多元函數(shù)微分法及其應用習題課平面點集和區(qū)域多元函數(shù)的極限多元函數(shù)連續(xù)的概念極限運算多元連續(xù)函數(shù)的性質多元函數(shù)概念一、主要內容全微分的應用高階偏導數(shù)隱函數(shù)求導法則復合函數(shù)求導法
2025-08-21 12:43
【總結】一、函數(shù)、極限、連續(xù)三、多元函數(shù)微分學二、導數(shù)與微分微分學四、微分學應用一、一、函數(shù)、極限、連續(xù)函數(shù)、極限、連續(xù)1.一元函數(shù)顯函數(shù)定義域:使表達式有意義的實數(shù)全體或由實際意義確定。隱函數(shù)參數(shù)方程所表示的函數(shù)函數(shù)的特性函數(shù)的特性有界性,單調性,奇偶性,周期性復合函數(shù)(構造新函數(shù)的重要方法)初等函數(shù)由
2025-02-08 19:47
【總結】導數(shù)的幾何意義英德中學高二數(shù)學備課組導數(shù)的幾何意義課堂引入學習目標新知探究新知運用學習反思問題1:平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?問題2如圖直線l1是曲線C的切線嗎?l2呢?l21AB0xy對于一般的曲線
2024-10-19 16:25
【總結】§偏導數(shù)一、偏導數(shù)的定義及其計算法二、高階偏導數(shù)一、偏導數(shù)的定義及其計算法類似地,可定義函數(shù)z?f(x,y)在點(x0,y0)處對y的偏導數(shù).?偏導數(shù)的定義設函數(shù)z?f(x,y)在點(x0,y0)的某一鄰域內有定義,若極限xyxfyxxfx?
2025-07-26 18:29
【總結】第八章.多元函數(shù)微分法及其應用第一節(jié)多元函數(shù)的基本概念教學目標:掌握多元函數(shù)的概念,掌握二元函數(shù)的幾何表示、極限、連續(xù)的概念,以及有界閉區(qū)域上連續(xù)函數(shù)的性質.課時安排:2課時重點:多元函數(shù)的極限、多元函數(shù)的連續(xù)性難點:多元函數(shù)的連續(xù)性教學法:講授法一.平面點集n維空間⒈平面點集,坐標系平面;①Def:坐標平面上具有某種性質的點的集合。記為
2025-08-17 04:09
【總結】().,,.,.,.上冊我們研究了一元函數(shù)一個自變量的函數(shù)及其微分但在許多實際問題中常常會遇到一個變量依賴于多個變量的情形這就提出了多元函數(shù)的概念以及多元函數(shù)的微分和積分問題本章將在一元函數(shù)
2025-01-19 10:12
【總結】導數(shù)的幾何意義自學導引1.導數(shù)的幾何意義(1)割線斜率與切線斜率設函數(shù)y=f(x)的圖象如圖所示,AB是過點A(x0,f(x0))與點B(x0+Δx,f(x0+Δx))的一條割線,此割線的斜率是ΔyΔx=f?x0+Δx
2025-07-26 02:55
【總結】回顧①平均變化率?fx121)()??fxxx2f(x函數(shù)y=f(x)的定義域為D,∈D,f(x)從x1到x2平均變化率為:②割線的斜率OABxyY=f(x)x1x2f(x1)f(x2)x2-x1=△xf(x2)-f(x1)=△y