【總結(jié)】精品資源構(gòu)造法證明不等式例析由于證明不等式?jīng)]有固定的模式,證法靈活多樣,技巧性強,使得不等式證明成為中學(xué)數(shù)學(xué)的難點之一.下面通過數(shù)例介紹構(gòu)造法在證明不等式中的應(yīng)用.一、構(gòu)造一次函數(shù)法證明不等式有些不等式可以和一次函數(shù)建立直接聯(lián)系,通過構(gòu)造一次函數(shù)式,利用一次函數(shù)的有關(guān)特性,完成不等式的證明.例1設(shè)0≤a、b、c≤2,求證:4a+b+c+abc≥2ab+2bc+2ca.
2025-06-24 16:44
【總結(jié)】Mathwang幾個經(jīng)典不等式的關(guān)系一幾個經(jīng)典不等式(1)均值不等式設(shè)是實數(shù),等號成立.(2)柯西不等式設(shè)是實數(shù),則當(dāng)且僅當(dāng)或存在實數(shù),使得時,等號成立.(3)排序不等式設(shè),為兩個數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當(dāng)且僅當(dāng)或時,等號成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】第一篇:放縮法與不等式的證明 放縮法與不等式的證明 我們知道,“放”和“縮”是證明不等式時最常用的推證技巧,但經(jīng)教學(xué)實踐告訴我們,這種技巧卻是不等式證明部分的一個教學(xué)難點。學(xué)生在證明不等式時,常因...
2024-10-28 03:46
【總結(jié)】第一篇:利用放縮法證明不等式舉例 利用放縮法證明不等式舉例 高考中利用放縮方法證明不等式,文科涉及較少,但理科卻常常出現(xiàn),且多是在壓軸題中出現(xiàn)。放縮法證明不等式有法可依,但具體到題,又常常沒有定法...
2024-10-27 12:24
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結(jié)】第一篇:分析法證明不等式專題 分析法證明不等式 已知非零向量a,b,a⊥b,求證|a|+|b|/|a+b| 2【1】 ∵a⊥b ∴ab=0 又由題設(shè)條件可知,a+b≠0(向量) ∴|a+...
2024-11-14 18:10
【總結(jié)】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版1第六章不等式第講(第一課時)立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版2考點搜索●比較法●綜合法●分析法
2025-08-11 14:49
【總結(jié)】第一篇:淺談用放縮法證明不等式 淮南師范學(xué)院2012屆本科畢業(yè)論文1 目錄 引言?????????????????????????????????(2)?????????????????????...
2024-10-28 08:11
【總結(jié)】第一篇:構(gòu)造法證明不等式5 構(gòu)造法證明不等式(2) (以下的構(gòu)造方法要求過高,即使不會也可以,如果沒有時 間就不用看了) 在學(xué)習(xí)過程中,常遇到一些不等式的證明,看似簡單,但卻無從下手,多種常用...
2024-10-28 01:37
【總結(jié)】2020年名師課堂輔導(dǎo)講座—高中部分[學(xué)習(xí)內(nèi)容]:1、不等式的性質(zhì)(1)aba-b0a=ba-b=0abbb,bcac(4)ab,c∈Ra+cb+c
2024-11-19 02:58
【總結(jié)】第一篇:巧用構(gòu)造函數(shù)法證明不等式 構(gòu)造函數(shù)法證明不等式 一、構(gòu)造分式函數(shù),利用分式函數(shù)的單調(diào)性證明不等式 【例1】證明不等式:|a|+|b||a+b| 1+|a|+|b|≥1+|a+b| 證...
2024-10-26 14:47
【總結(jié)】放縮法證明數(shù)列不等式主要放縮技能:1.2.3.4.5.6.,最大值為,且(1)求;(2)證明::,且,;(1)求證:數(shù)列是等差數(shù)列;(2)解關(guān)于數(shù)列的不等式:(3)記,證明:例4.已知數(shù)列滿足:是公差為1的等差數(shù)
2025-03-25 02:44
【總結(jié)】第一篇:不等式證明 不等式證明 : 比較法是證明不等式的最基本、最重要的方法之一,它可分為作差法、作商法 (1)作差比較: ①理論依據(jù)a-b0 ab;a-b=0 a=b;a-b a...
2024-10-29 11:38
【總結(jié)】寧波大學(xué)理學(xué)院本科畢業(yè)設(shè)計(論文)I編號:本科畢業(yè)設(shè)計(論文)題目:構(gòu)造法證明不等式
2025-07-07 18:21