【總結(jié)】一、問(wèn)題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2024-08-20 08:39
【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【總結(jié)】1Tel:(M)13606803660,613660(O)88071024-5625Office:行政樓-102:Name:金義明2前言二、考試開(kāi)卷考,其中60%以上的題為上課講過(guò)的例題。一、例題基本上是往年考研題,題量大,全面涵蓋考綱;三、課程分三部分:1、微積分,10
2025-05-14 21:56
【總結(jié)】旋轉(zhuǎn)體就是由一個(gè)平面圖形繞這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸.圓柱圓錐圓臺(tái)二、體積1.旋轉(zhuǎn)體的體積一般地,如果旋轉(zhuǎn)體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉(zhuǎn)一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【總結(jié)】微積分Ⅰ1第九章重積分§二重積分的計(jì)算一、利用直角坐標(biāo)計(jì)算二重積分二、利用極坐標(biāo)計(jì)算二重積分三、小結(jié)微積分Ⅰ2第九章重積分一、利用直角坐標(biāo)計(jì)算二重積分bxa??),()(21xyx????)(2xy??abD)(1xy??Dba)(2x
【總結(jié)】復(fù)合函數(shù)求導(dǎo)法則例4設(shè)。解
2025-01-15 15:12
【總結(jié)】(一)函數(shù)的極限與連續(xù)一.選擇題1.在其定義域內(nèi)為()(A)無(wú)界函數(shù)(B)偶函數(shù)(C)單調(diào)函數(shù)(D)周期函數(shù)2.設(shè)函數(shù),則()(A)它們是完全相同的函數(shù)(B)相同;(C)相同(D)相同。3.設(shè),則()(A)(B)(C)
2025-06-29 13:24
【總結(jié)】問(wèn)題???dxxex解決思路利用兩個(gè)函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計(jì)算.例1求積分.
2024-07-31 11:11
【總結(jié)】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【總結(jié)】第二章微積分的直接基礎(chǔ)——極限第一節(jié)數(shù)列極限主要內(nèi)容:數(shù)列及數(shù)列極限的概念早在兩千多年前,人們從生活、生產(chǎn)實(shí)際中產(chǎn)生了樸素的極限思想,公元前3世紀(jì),我國(guó)的莊子就有“一尺之棰,日取其半,萬(wàn)世不竭”的名言.17世紀(jì)上半葉法國(guó)數(shù)學(xué)家笛卡兒(Descartes)創(chuàng)建解析幾何之后,變量就進(jìn)入了數(shù)學(xué).隨之牛頓
2025-01-13 19:09
【總結(jié)】函數(shù)極限的存在準(zhǔn)則學(xué)習(xí)函數(shù)極限的存在準(zhǔn)則之前,我們先來(lái)學(xué)習(xí)一下左、右的概念。我們先來(lái)看一個(gè)例子:例:符號(hào)函數(shù)為對(duì)于這個(gè)分段函數(shù),x從左趨于0和從右趨于0時(shí)函數(shù)極限是不相同的.為此我們定義了左、右極限的概念。定義:如果x僅從左側(cè)(x<x0)趨近x0時(shí),函數(shù)與常量A無(wú)限接近,則稱(chēng)A為
2024-08-22 14:26
【總結(jié)】特點(diǎn):)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應(yīng)用中已知近似公式:需要解決的問(wèn)題如何提高精度?如何估計(jì)誤差?xx的一次多項(xiàng)式
2024-08-10 16:25
【總結(jié)】1微積分基本公式問(wèn)題的提出積分上限函數(shù)及其導(dǎo)數(shù)牛頓—萊布尼茨公式小結(jié)思考題作業(yè)(v(t)和s(t)的關(guān)系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過(guò)定積分的物理意義,例變速直線運(yùn)動(dòng)中路
2025-02-21 10:32
【總結(jié)】微積分的名稱(chēng)?Calculus一詞是源自拉丁文,原意是指石子。因?yàn)楣艢W洲人喜歡用石子來(lái)幫助計(jì)算,所以calculus被引申作計(jì)算的意思。?現(xiàn)時(shí)醫(yī)學(xué)上仍用calculus一詞代表石子。例:acalculousman不是指一位精通微積分的人,而是一位患腎結(jié)石的病人!?微積分這個(gè)中文詞,最早見(jiàn)諸清代數(shù)學(xué)家李善蘭和英國(guó)
2024-09-29 08:13
【總結(jié)】聊聊天微積分的產(chǎn)生——17、18、19世紀(jì)的微積分.很久很久以前,在很遠(yuǎn)很遠(yuǎn)的一塊古老的土地上,有一群智者……開(kāi)普勒、笛卡爾、卡瓦列里、費(fèi)馬、帕斯卡、格雷戈里、羅伯瓦爾、惠更斯、巴羅、瓦里斯、牛頓、萊布尼茨、…….任何研究工作的開(kāi)端,幾乎都是極不完美的嘗試,
2024-08-10 15:02