【總結】立體幾何大題專練1、如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點;(1)求證:MN//平面PAD(2)若∠PDA=45°,求證:MN⊥平面PCD2(本小題滿分12分)如圖,在三棱錐中,分別為的中點.PACEBF(1)求證:平面;(2)若平面平面,且,,求證:平面平面.(1)證明:連
2025-06-23 03:46
【總結】.......姓名____________班級___________學號____________分數(shù)______________一、選擇題.下列說法正確的是 ( ?。〢.三點確定一個平面 B.四邊形一定是平面圖形
2025-06-22 01:32
【總結】選擇題1.(12年四川卷)如圖,半徑為的半球的底面圓在平面內,過點作平面的垂線交半球面于點,過圓的直徑作平面成角的平面與半球面相交,所得交線上到平面的距離最大的點為,該交線上的一點滿足,則、兩點間的球面距離為()A.B.C.D.2.(12年廣東卷)某幾何體的三視圖如圖1所示,它的體積為(
2025-01-14 14:09
【總結】立體幾何中的翻折問題連州中學周騰達圖形的展開與翻折問題就是一個由抽象到直觀,由直觀到抽象的過程.在歷年高考中以圖形的展開與折疊作為命題對象時常出現(xiàn),因此,關注圖形的展開與折疊問題是非常必要的.折疊問題2020年高考的熱點,預測明年高考也應是一個熱點.把一個平面圖形按某種要求折
2025-10-31 05:40
【總結】三視圖與立體幾何部分1.(2014年全國新課標卷Ⅰ第8題)如圖,網(wǎng)格紙的各小格都是正方形,粗實線畫出的事一個幾何體的三視圖,則這個幾何體是()2.(2014年全國新課標卷Ⅰ第19題)(本題滿分12分)如圖,三棱柱中,側面為菱形,的中點為,且.(Ⅰ)證明:(Ⅱ)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B
2025-06-24 20:20
【總結】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識網(wǎng)絡 一、經典例題剖析 考點一點線面的位置關系 1、設l是直線,a,β是兩個不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
2025-11-07 23:04
【總結】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2025-11-03 12:11
【總結】三視圖問題分類解答例1、概念問題1、下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是.(填序號)2、如圖,折線表示嵌在玻璃正方體內的一根鐵絲,請把它的三視圖補充完整.3、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中所標出的尺寸(單位:㎝),可得這個幾何體的體積是.4、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中
2025-06-07 21:09
【總結】1用空間向量處理立體幾何的問題立體幾何著重的是研究點、線、面之間的關系,研究空間三種位置關系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計算。自上海高考試卷內容改革以來,純粹用立體幾何的公理、定理來證明或計算立體幾何問題越來越少,而借助于向量的計算方法來處理立體幾何的問題卻越來越多。本講座就是詳細
2025-08-27 17:12
【總結】《立體幾何初步》練習題一、選擇題1、一條直線和三角形的兩邊同時垂直,則這條直線和三角形的第三邊的位置關系是()A、垂直B、平行C、相交不垂直D、不確定2.在正方體中,與垂直的是()A.B.C.D.3、線和平面,能得出的一個條件是(
2025-06-24 15:16
【總結】立體幾何復習講義【基礎回扣】1.平面平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內,推出點在面內),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19
【總結】一、基本概念1.空間向量:在空間內,我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負向量:兩個模相等且方向相反的向量是互為負向量.如的相反向量記為-.
2025-04-17 08:18
【總結】一輪復習之立體幾何姓名一輪復習之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【總結】1.[2007年普通高等學校統(tǒng)一考試(海南、寧夏卷)數(shù)學文科第8題,理科第8題]20 20 正視圖20 側視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學校招生全國統(tǒng)一考試(山東
2025-06-07 22:04
【總結】平面的基本性質公理1:如果一條直線上的兩點在一個平面內,那么這條直線在此平面內(教師引導學生閱讀教材P42前幾行相關內容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……C·
2025-04-17 00:53