【總結(jié)】立體幾何大題專練1、如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點;(1)求證:MN//平面PAD(2)若∠PDA=45°,求證:MN⊥平面PCD2(本小題滿分12分)如圖,在三棱錐中,分別為的中點.PACEBF(1)求證:平面;(2)若平面平面,且,,求證:平面平面.(1)證明:連
2025-06-23 03:46
【總結(jié)】.......姓名____________班級___________學(xué)號____________分?jǐn)?shù)______________一、選擇題.下列說法正確的是 ( ?。〢.三點確定一個平面 B.四邊形一定是平面圖形
2025-06-22 01:32
【總結(jié)】選擇題1.(12年四川卷)如圖,半徑為的半球的底面圓在平面內(nèi),過點作平面的垂線交半球面于點,過圓的直徑作平面成角的平面與半球面相交,所得交線上到平面的距離最大的點為,該交線上的一點滿足,則、兩點間的球面距離為()A.B.C.D.2.(12年廣東卷)某幾何體的三視圖如圖1所示,它的體積為(
2025-01-14 14:09
【總結(jié)】立體幾何中的翻折問題連州中學(xué)周騰達(dá)圖形的展開與翻折問題就是一個由抽象到直觀,由直觀到抽象的過程.在歷年高考中以圖形的展開與折疊作為命題對象時常出現(xiàn),因此,關(guān)注圖形的展開與折疊問題是非常必要的.折疊問題2020年高考的熱點,預(yù)測明年高考也應(yīng)是一個熱點.把一個平面圖形按某種要求折
2024-11-09 05:40
【總結(jié)】三視圖與立體幾何部分1.(2014年全國新課標(biāo)卷Ⅰ第8題)如圖,網(wǎng)格紙的各小格都是正方形,粗實線畫出的事一個幾何體的三視圖,則這個幾何體是()2.(2014年全國新課標(biāo)卷Ⅰ第19題)(本題滿分12分)如圖,三棱柱中,側(cè)面為菱形,的中點為,且.(Ⅰ)證明:(Ⅱ)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC-A1B
2025-06-24 20:20
【總結(jié)】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識網(wǎng)絡(luò) 一、經(jīng)典例題剖析 考點一點線面的位置關(guān)系 1、設(shè)l是直線,a,β是兩個不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
2024-11-16 23:04
【總結(jié)】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【總結(jié)】三視圖問題分類解答例1、概念問題1、下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是.(填序號)2、如圖,折線表示嵌在玻璃正方體內(nèi)的一根鐵絲,請把它的三視圖補充完整.3、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中所標(biāo)出的尺寸(單位:㎝),可得這個幾何體的體積是.4、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中
2025-06-07 21:09
【總結(jié)】1用空間向量處理立體幾何的問題立體幾何著重的是研究點、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計算。自上海高考試卷內(nèi)容改革以來,純粹用立體幾何的公理、定理來證明或計算立體幾何問題越來越少,而借助于向量的計算方法來處理立體幾何的問題卻越來越多。本講座就是詳細(xì)
2024-09-05 17:12
【總結(jié)】《立體幾何初步》練習(xí)題一、選擇題1、一條直線和三角形的兩邊同時垂直,則這條直線和三角形的第三邊的位置關(guān)系是()A、垂直B、平行C、相交不垂直D、不確定2.在正方體中,與垂直的是()A.B.C.D.3、線和平面,能得出的一個條件是(
2025-06-24 15:16
【總結(jié)】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19
【總結(jié)】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【總結(jié)】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2024-08-02 12:16
【總結(jié)】1.[2007年普通高等學(xué)校統(tǒng)一考試(海南、寧夏卷)數(shù)學(xué)文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學(xué)校招生全國統(tǒng)一考試(山東
2025-06-07 22:04
【總結(jié)】平面的基本性質(zhì)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……C·
2025-04-17 00:53