【總結(jié)】【三角形】1、三角形的定義:由三條線段圍成的圖形(每相鄰兩條線段的端點相連或重合),叫三角形。2、從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足間的線段叫做三角形的高,這條對邊叫做三角形的底。三角形只有3條高。重點:三角形高的畫法。3、三角形的特性:1、物理特性:穩(wěn)定性。如:自行車的三角架,電線桿上的三角架。4、邊的特性:任意兩邊之和大于第三邊。5、為了表達方
2024-08-02 01:52
【總結(jié)】全等三角形知識點歸納與復(fù)習(xí)(一)1.的兩個三角形全等;2.全等三角形的對應(yīng)邊_;對應(yīng)角;對應(yīng)邊上的高;對應(yīng)角的平分線;對應(yīng)邊的中線;對應(yīng)周長,對應(yīng)面積.3.證明全等三角形的方法(1)三邊
2025-04-16 22:11
【總結(jié)】......初二上冊知識點:三角形復(fù)習(xí)1、三角形的定義:由不在同一直線上的三條線段首尾順次相接組成的圖形叫做三角形._C_B_A三角形有三條邊,三個內(nèi)角,;相鄰兩邊所組成的角叫做三角形的內(nèi)角;
2025-04-16 12:28
【總結(jié)】大小相同,形狀不相同。形狀相同,大小不相同。大小相同,形狀也相同。能夠重合的兩個圖形叫做全等形FEDCBA能夠重合的兩個三角形叫做全等三角形。1.半徑相等的兩個圓是全等圖形。2.一面中華人民共和國國旗上,4個小五角星都全等。3.面積相等的兩個三角形是全等三
2024-11-07 01:04
【總結(jié)】.......《全等三角形》單元復(fù)習(xí)一.選擇題1.①全等三角形對應(yīng)邊相等;②三個角對應(yīng)相等的兩個三角形全等;③三邊對應(yīng)相等的兩個三角形全等;④有兩邊對應(yīng)相等的兩個三角形全等.上述命題中正確的個數(shù)有()A.4個
2025-03-25 07:32
【總結(jié)】 全等三角形只是總結(jié)及經(jīng)典例題[知識要點]一、全等三角形1.判定和性質(zhì)一般三角形直角三角形判定邊角邊(SAS)、角邊角(ASA)角角邊(AAS)、邊邊邊(SSS)具備一般三角形的判定方法斜邊和一條直角邊對應(yīng)相等(HL)性質(zhì)對應(yīng)邊相等,對應(yīng)角相等對應(yīng)中線相等,對應(yīng)高相等,對應(yīng)角平分線相等注:①判定兩個三角形全等
2025-04-16 22:13
【總結(jié)】......全等三角形知識點歸納與復(fù)習(xí)(一)1.的兩個三角形全等;2.全等三角形的對應(yīng)邊_;對應(yīng)角;對應(yīng)邊上的高
【總結(jié)】全等三角形一、目標(biāo)認知學(xué)習(xí)目標(biāo): 1.了解全等三角形的概念和性質(zhì),能夠準(zhǔn)確地辨認全等三角形中的對應(yīng)元素; 2.探索三角形全等的條件,能利用三角形全等進行證明,掌握綜合法證明的格式。重點: 1.使學(xué)生理解證明的基本過程,掌握用綜合法證明的格式; 2.三角形全等的性質(zhì)和條件。難點: ??; 2.選用合適的條件證明兩個三角形全等經(jīng)
2025-06-19 22:55
【總結(jié)】圖11.已知等腰三角形的一個內(nèi)角為,則這個等腰三角形的頂角為【】.(A) (B) (C)或 (D)或2.如圖1所示,在△ABC中,已知點D,E,F(xiàn)分別是BC,AD,CE的中點,且=4平方厘米,則的值為【】.(A)2平方厘米(B)1平方厘米(C平方厘米D)平方厘米4.工人師傅常用角尺平分一個任意角.做法如下:如圖2所示,∠AOB是一個任意角,在邊
2025-06-19 22:49
【總結(jié)】全等三角形綜合復(fù)習(xí)切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長線上一點,點在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-06-23 18:30
【總結(jié)】全等三角形判定測試題班級學(xué)號姓名分數(shù)_______一、選一選,看完四個選項后再做決定呀!(每小題3分,共30分)1.已知等腰三角形的一個內(nèi)角為,則這個等腰三角形的頂角為【】.(A) (B) (C)或 (D)或2.如圖1所示,在△ABC中,已知點D,E,F(xiàn)分別是BC,AD,CE的中點,
2025-06-24 20:56
【總結(jié)】1探索三角形全等的條件練習(xí)題1、已知AD是⊿ABC的中線,BE⊥AD,CF⊥AD,問BE=CF嗎?說明理由。2、已知AC=BD,AE=CF,BE=DF,問AE∥CF嗎?3、已知AB=CD,BE=DF,AE=CF,問AB∥
2024-11-21 21:37
【總結(jié)】......全等三角形綜合復(fù)習(xí)切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-06-23 03:58
【總結(jié)】1FEDCBA三角形全等習(xí)題精選(1)1.下列說法:①所有的等邊三角形都全等②斜邊相等的直角三角形全等③頂角和腰長對應(yīng)相等的等腰三角形全等④有兩個銳角相等的直角三角形全等其中正確的個數(shù)是()A.1個B.2個C.3個D.4個,AB平分∠
2025-01-09 09:49
【總結(jié)】......第一章圖形的初步認識考點一、線段垂直平分線,角的平分線,垂線1、線段垂直平分線的性質(zhì)定理及逆定理垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和
2025-06-23 03:59