【文章內容簡介】
的兩個交點的橫坐標、:①有兩個交點拋物線與軸相交;②有一個交點(頂點在軸上)拋物線與軸相切;③沒有交點拋物線與軸相離.(4)平行于軸的直線與拋物線的交點同(3)一樣可能有0個交點、1個交點、兩交點的縱坐標相等,設縱坐標為,則橫坐標是的兩個實數(shù)根.(5)一次函數(shù)的圖像與二次函數(shù)的圖像的交點,由方程組的解的數(shù)目來確定:①方程組有兩組不同的解時與有兩個交點。 ②方程組只有一組解時與只有一個交點;③方程組無解時與沒有交點.(6)拋物線與軸兩交點之間的距離:若拋物線與軸兩交點為,由于、是方程的兩個根,故 13.二次函數(shù)與一元二次方程的關系:(1)一元二次方程就是二次函數(shù)當函數(shù)y的值為0時的情況.(2)二次函數(shù)的圖象與軸的交點有三種情況:有兩個交點、有一個交點、沒有交點;當二次函數(shù)的圖象與軸有交點時,交點的橫坐標就是當時自變量的值,即一元二次方程的根.(3)當二次函數(shù)的圖象與軸有兩個交點時,則一元二次方程有兩個不相等的實數(shù)根;當二次函數(shù)的圖象與軸有一個交點時,則一元二次方程有兩個相等的實數(shù)根;當二次函數(shù)的圖象與軸沒有交點時,則一元二次方程沒有實數(shù)根:(1)二次函數(shù)常用來解決最優(yōu)化問題,這類問題實際上就是求函數(shù)的最大(小)值;(2)二次函數(shù)的應用包括以下方面:分析和表示不同背景下實際問題中變量之間的二次函數(shù)關系;運用二次函數(shù)的知識解決實際問題中的最大(小)值.:(1)理解問題;(2)分析問題中的變量和常量;(3)用函數(shù)表達式表示出它們之間的關系;(4)利用二次函數(shù)的有關性質進行求解;(5)檢驗結果的合理性,對問題加以拓展等.黃岡中學“沒有學不好滴數(shù)學”系列之十二二次函數(shù)知識點詳解(最新原創(chuàng)助記口訣)知識點四,正比例函數(shù)和一次函數(shù) 一般地,如果(k,b是常數(shù),k0),那么y叫做x的一次函數(shù)。特別地,當一次函數(shù)中的b為0時,(k為常數(shù),k0)。這時,y叫做x的正比例函數(shù)。一次函數(shù)的圖像:所有一次函數(shù)的圖像都是一條直線一次函數(shù)、正比例函數(shù)圖像的主要特征:一次函數(shù)的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)的圖像是經(jīng)過原點(0,0)的直線。k的符號b的符號函數(shù)圖像圖像特征k0b0 y 0 x圖像經(jīng)過一、二、三象限,y隨x的增大而增大。b0 y 0 x圖像經(jīng)過一、三、四象限,y隨x的增大而增大。K0b0 y 0 x 圖像經(jīng)過一、二、四象限,y隨x的增大而減小b0 y 0 x 圖像經(jīng)過二、三、四象限,y隨x的增大而減小。注:當b=0時,一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。正比例函數(shù)的性質一般地,正比例函數(shù)有下列性質:(1)當k0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;(2)當k0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。一次函數(shù)的性質一般地,一次函數(shù)有下列性質:(1)當k0時,y隨x的增大而增大(2)當k0時,y隨x的增大而減小正比例函數(shù)和一次函數(shù)解析式的確定確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式(k0)中的常數(shù)k。確定一個一次函數(shù),需要確定一次函數(shù)定義式(k0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法知識點五、反比例函數(shù) 反比例函數(shù)的概念:一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。反比例函數(shù)的圖像反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。反比例函數(shù)的性質反比例函數(shù)k的符號k0k0圖像 y O x y O x性質①x的取值范圍是x0, y的取值范圍是y0;②當k0時,函數(shù)圖像的兩個分支分別在第一、三象限。在每個象限內,y隨x 的增大而減小。①x的取值范圍是x0, y的取值范圍是y0;②當k0時,函數(shù)圖像的兩個分支分別在第二、四象限。在每個象限內,y隨x 的增大而增大。反比例函數(shù)解析式的確定:確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。知識點六、二次函數(shù)的概念和圖像 二次函數(shù)的概念:一般地,如果特,特別注意a不為零那么y叫做x 的二次函數(shù)。叫做二次函數(shù)的一般式。二次函數(shù)的圖像:二次函數(shù)的圖像是一條關于對稱的曲線,這條曲線叫拋物線。拋物線的主要特征:①有開口方向;②有對稱軸;③有頂點。二次函數(shù)圖像的畫法五點法:(1)先根據(jù)函數(shù)解析式,求出頂點坐標,在平面直角坐標系中描出頂點M,并用虛線畫出對稱軸(2)求拋物線與坐標軸的交點:當拋物線與x軸有兩個交點時,描出這兩個交點A,B及拋物線與y軸的交點C,再找到點C的對稱點D。將這五個點按從左到右的順序連接起來,并向上或向下延伸,就得到二次函數(shù)的圖像。當拋物線與x軸只有一個交點或無交點時,描出拋物線與y軸的交點C及對稱點D。由C、M、D三點可粗略地畫出二次函數(shù)的草圖。如果需要畫出比較精確的圖像,可再描出一對對稱點A、B,然后順次連接五點,畫出二次函數(shù)的圖像。知識點七、二次函數(shù)的解析式 二次函數(shù)的解析式有三種形式:口訣 一般 兩根 三頂點(1)一般 一般式:(2)兩根 當拋物線與x軸有交點時,即對應二次好方程有實根和存在時,根據(jù)二次三項式的分解因式,二次函數(shù)可轉化為兩根式。如果沒有交點,則不能這樣表示。a 的絕對值越大,拋物線的開口越小。(3)三頂點