【總結(jié)】九年級(jí)數(shù)學(xué)(上冊(cè))第一章證明(二)(2)三角形的垂心駛向勝利的彼岸線段的垂直平分線的作法?已知:線段AB,如圖.?求作:線段AB的垂直平分線.?作法:?用尺規(guī)作線段的垂直平分線.?A和B為圓心,以大于AB/2長(zhǎng)為半徑作弧,兩弧交于點(diǎn)C和D.ABCD?2.作直線
2024-12-28 01:19
【總結(jié)】九年級(jí)數(shù)學(xué)(上冊(cè))第一章證明(二)(1)性質(zhì)定理與判定定理駛向勝利的彼岸線段的垂直平分線?我們?cè)?jīng)利用折紙的方法得到:?線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)距離相等.?你能證明這一結(jié)論嗎?回顧思考已知:如圖,AC=BC,MN⊥AB,P是MN上任意一點(diǎn).求證:PA=PB.A
2024-12-29 02:20
【總結(jié)】如初多媒體制作中心ABL情景引入在濟(jì)青高速公路L(淄博段)的同側(cè),有兩個(gè)化工廠A、B,為了便于兩廠的工人看病,市政府計(jì)劃在公路邊上修建一所醫(yī)院,使得兩個(gè)工廠的工人都沒(méi)意見(jiàn),問(wèn)醫(yī)院的院址應(yīng)選在何處?深廣高速公路如初多媒體制作中心線段的垂直平分線
2024-11-10 21:05
【總結(jié)】用心想一想,馬到功成如圖,A、B表示兩個(gè)倉(cāng)庫(kù),要在A、B一側(cè)的河岸邊建造一個(gè)碼頭,使它到兩個(gè)倉(cāng)庫(kù)的距離相等,碼頭應(yīng)建在什么位置?AB線段垂直平分線的性質(zhì):定理:線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等.已知:如圖,直線MN⊥AB,垂足是C,且AC=BC,
2025-06-06 12:09
【總結(jié)】習(xí)題1.7的第1題:利用尺規(guī)作三角形三條邊的垂直平分線,當(dāng)作完此題時(shí)你發(fā)現(xiàn)了什么?用心想一想,馬到功成發(fā)現(xiàn):三角形三邊的垂直平分線交于一點(diǎn).這一點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等.剪一個(gè)三角形紙片,通過(guò)折疊找出每條邊的垂直平分線,觀察這三條垂直平分線
【總結(jié)】課題、線段的垂直平分線(二)課型新授課教學(xué)目標(biāo)1.能夠利用直尺和圓規(guī)作已知線段的垂直平分線;已知底邊及底邊上的高,能夠利用直尺和圓規(guī)作出等腰三角形。知道為什么這樣做圖,提高熟練地使用直尺和圓規(guī)作圖的技能。2.通過(guò)探索、猜測(cè)、證明的過(guò)程,進(jìn)一步拓展學(xué)生的推理證明意識(shí)和能力。教學(xué)重點(diǎn)作已知線段的垂直平分線。教學(xué)難點(diǎn)理
2024-12-07 23:19
【總結(jié)】課題、線段的垂直平分線(一)課型新授課教學(xué)目標(biāo)1.要求學(xué)生掌握線段垂直平分線的性質(zhì)定理及判定定理,能夠利用這兩個(gè)定理解決一些問(wèn)題。2.能夠證明線段垂直平分線的性質(zhì)定理及判定定理。3.通過(guò)探索、猜測(cè)、證明的過(guò)程,進(jìn)一步拓展學(xué)生的推理證明意識(shí)和能力。教學(xué)重點(diǎn)線段垂直平分線性質(zhì)定理及其逆定理。教學(xué)難點(diǎn)線段垂直平分線
【總結(jié)】線段的垂直平分線某市政府為了方便居民的生活,計(jì)劃在三個(gè)住宅小區(qū)A、B、C之間修建一個(gè)購(gòu)物中心,試問(wèn),該購(gòu)物中心應(yīng)建于何處,才能使得它到三個(gè)小區(qū)的距離相等。ABC實(shí)際問(wèn)題1ABL實(shí)際問(wèn)題2在某國(guó)道L的同側(cè),有兩個(gè)工廠A、B,為了便于兩廠的工人看病,市政府計(jì)劃在公路邊上修建
2025-06-20 20:30
【總結(jié)】線段的垂直平分線1、能夠利用尺規(guī)法作一條已知線段的垂直平分線,并能證明它的正確性。2、經(jīng)歷探索,證明線段垂直平分線性質(zhì)定理及其逆定理的過(guò)程,進(jìn)一步發(fā)展學(xué)生的推理證明意識(shí)和能力。3、能夠利用線段的垂直平分線的性質(zhì)定理及其逆定理證明相關(guān)結(jié)論,理解三角形三邊的垂直平分線相交于一點(diǎn),這點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等。
2025-06-20 20:33
【總結(jié)】3線段的垂直平分線第1課時(shí)線段垂直平分線的性質(zhì)定理及逆定理【知識(shí)與技能】證明線段垂直平分線的性質(zhì)定理和判定定理【過(guò)程與方法】經(jīng)歷探索、猜測(cè)、證明的過(guò)程,進(jìn)一步發(fā)展學(xué)生的推理證明能力,豐富對(duì)幾何圖形的認(rèn)識(shí)【情感態(tài)度】通過(guò)小組活動(dòng),學(xué)會(huì)與他人合作,并能與他人交流思維的過(guò)程和結(jié)果.【教學(xué)重點(diǎn)】運(yùn)用幾何
2024-12-09 12:43
【總結(jié)】線段的垂直平分線(1)我們?cè)?jīng)利用折紙的方法得到:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)距離相等.你能證明這一結(jié)論嗎?定理:線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等已知:如圖,直線MN⊥AB,垂足是C,且AC=BC,P是MN上任意一點(diǎn).求證:PA=PB.ACB
2025-08-01 13:44
【總結(jié)】線段垂直平分線的性質(zhì)定理已知:線段AB,直線EF⊥AB,垂足為O,AO=BO,點(diǎn)P是EF上異于點(diǎn)O的任意一點(diǎn).求證:PA=PB.ABPEFO∴PA=PB。證明:∵EF⊥AB(已知),∴∠POA=∠POB=90°(垂直的定義)。在△PAO和△PBO中,
2024-11-11 07:33
【總結(jié)】線段的垂直平分線關(guān)店中學(xué)繆培威海市政府為了方便居民的生活,計(jì)劃在三個(gè)住宅小區(qū)A、B、C之間修建一個(gè)購(gòu)物中心,試問(wèn),該購(gòu)物中心應(yīng)建于何處,才能使得它到三個(gè)小區(qū)的距離相等。ABC實(shí)際問(wèn)題1煙威高速公路實(shí)際問(wèn)題2在煙威高速公路L的同側(cè),有兩個(gè)化工廠
2024-11-24 15:53
2024-11-09 06:54
【總結(jié)】線段垂直平分線和角的平分線部分典型習(xí)題1、(2020·重慶)△ABC中,AB=AC,∠BAC=100°,兩腰AB、AC的垂直平分線交于點(diǎn)P,則()A、點(diǎn)P在△ABC內(nèi)B、點(diǎn)P在△ABC底邊上C、點(diǎn)P在△ABC外D、點(diǎn)P的位置與△ABC的
2024-11-11 13:15