【總結】4圓周角和圓心角的關系第三章圓課堂達標素養(yǎng)提升第三章圓第2課時圓周角定理的推論課堂達標一、選擇題第2課時圓周角定理的推論1.如圖K-23-1所示,AB是⊙O的直徑,弦DC與AB相交于點E,若∠ACD=50°,則∠DAB的度數(shù)是
2025-06-12 12:07
【總結】北師大版九年級下冊數(shù)學()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,又是中心對稱圖形A.①②B.①③C.②③D.①②③?答:相等.答:頂點在圓心的角叫圓心角.?B情境導入本節(jié)目標..
2025-06-20 17:31
【總結】北師大版九年級下冊數(shù)學圓周角:頂點在圓上,它的兩邊分別與圓還有另一個交點,像這樣的角,叫做圓周角.圓周角定理圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半.ABC●O●OABC●OABC●OABC情境導入本節(jié)目標,會熟練運用推論解決問題.2.培養(yǎng)學生觀察、分析及理解問題的能力
【總結】4圓周角和圓心角的關系第三章圓課堂達標素養(yǎng)提升第三章圓第1課時圓周角定理課堂達標一、選擇題第1課時圓周角定理1.如圖K-22-1,A,B,C是⊙O上的三點,若∠OBC=50°,則∠A的度數(shù)是()A.40°
2025-06-18 12:03
【總結】導入新課講授新課當堂練習課堂小結第三章圓圓周角和圓心角的關系第2課時圓周角和直徑的關系及圓內(nèi)接四邊形..(重點)學習目標問題1什么是圓周角?導入新課復習引入特征:①角的頂點在圓上.②角的兩邊都與圓相交.頂點在圓上,并且兩邊都和圓
2025-06-18 01:09
【總結】北京師范大學出版社九年級|下冊第三章圓4圓周角和圓心角的關系【創(chuàng)設情境】問題1在圓中,滿足什么條件的角是圓心角?頂點在圓心的角叫做圓心角.問題2在同圓或等圓中,弧、弦、圓心角乊間有什么關系?在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,如果兩條弧相等,
2025-06-14 12:05
2025-06-14 12:04
【總結】第三章圓圓周角和圓心角的關系知識點1圓的內(nèi)接多邊形及多邊形的外接圓的概念(D)(A)知識點2圓內(nèi)接四邊形ABCD內(nèi)接于圓,∠A∶∠B∶∠C∶∠D=5∶m∶4∶n,則m,n滿足的條件是(C)=4n=5n+n=9+n=18
2025-06-17 12:05
【總結】圓周角和圓心角的關系能力提升,若AB是☉O的直徑,CD是☉O的弦,∠ABD=58°,則∠BCD等于()°°°°,△ABC內(nèi)接于☉O,∠C=60°,AB=6,則☉O的半徑是()(第1題圖)
2024-12-03 11:48
【總結】●OEFABC頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游戲中
2024-11-18 21:17
【總結】ABCO,∠BOC是角,∠BAC是角。若∠BOC=80°,∠BAC=。圓心圓周40°,點A,B,C都在⊙O上,若∠ABO=65°,則∠BCA=()A.25
2024-11-18 18:01
【總結】如圖,在足球射門的游戲中,球員射中球門的難易程度與他所處的位置B對球門AC的張角(∠BAC)有關.當球員在B、D、E三點射門時,他所處的位置對球門AC分別形成三個張角∠BAC,∠BAC,∠BAC.這三個角的大小有什么關系?在這三點射門的效果一樣嗎?創(chuàng)設情境,自然引入探究學習,感悟新知問題1:觀察圖中的
2024-11-17 18:27
【總結】圓周角和圓心角的關系(1)圓周角定理一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.弧的度數(shù)的關系?23、(05年茂名)下列命題是真命題的是()1)垂直弦的直徑平分這條弦2)相等的圓心角所對的弧相等3)圓既是軸對稱圖形,還是中心對稱圖形A
2024-11-30 08:31
【總結】圓周角和圓心角的關系第1課時能力提升,正方形ABCD的四個頂點都在☉O上,點P在劣弧上,是不同于點C的任意一點,則∠BPC的度數(shù)是()°°°°,在☉O中,∠AOB的度數(shù)為m,C是優(yōu)弧上一點,D,E是上不同的兩點(不與A,B兩點重合),則
2024-12-03 05:04