【總結(jié)】圓周角和圓心角的關(guān)系(1)圓周角定理一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.弧的度數(shù)的關(guān)系?23、(05年茂名)下列命題是真命題的是()1)垂直弦的直徑平分這條弦2)相等的圓心角所對的弧相等3)圓既是軸對稱圖形,還是中心對稱圖形A
2024-11-30 08:31
【總結(jié)】九年級數(shù)學(下)第三章圓3.圓周角和圓心角的關(guān)系(2)圓周角定理11、一條弧所對的圓心角等于_______,所對的圓周角等于_______。2、一弦分圓成兩部分,其中一部分是另一部分的4倍,則這弦所對的圓周角度數(shù)為________________。33、如圖,在⊙O中,∠BAC=32
2024-08-10 17:24
【總結(jié)】【圓周角和圓心角的關(guān)系(1)】(P78-80)【學習目標】1、知道圓周角的概念;2、掌握圓周角的兩個特征、定理的內(nèi)容及會進行簡單的應用.一、舊知回顧1、圓心角的定義?——頂點在_________的角叫圓心角.2、圓心角的度數(shù)和它所對的弧的度數(shù)有何關(guān)系?如圖:∠AOB弧AB的度數(shù)3、
2024-11-19 14:39
【總結(jié)】第三章圓《圓周角和圓心角的關(guān)系(第1課時)》教學設計說明佛山市華英學校饒宇藍一、學生起點分析學生的知識技能基礎:學生在本章的第二節(jié)課中,通過探索,已經(jīng)學習了同圓或等圓中弧、弦和圓心角的關(guān)系,并對定理進行了嚴密的證明,通過一系列簡單的練習對這個關(guān)系熟悉,具備了靈活應用本關(guān)系解決問題的基本能力.學生活動經(jīng)
2024-11-28 17:50
【總結(jié)】圓周角和圓心角的關(guān)系(1)一、舊知回放:?.OBC答:相等.答:頂點在圓心的角叫圓心角.度數(shù)的關(guān)系?B3、下列命題是真命題的是()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,還是中心對稱圖形A①②B①③
2024-11-23 10:44
【總結(jié)】北師大版九年級下冊數(shù)學()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,又是中心對稱圖形A.①②B.①③C.②③D.①②③?答:相等.答:頂點在圓心的角叫圓心角.?B情境導入本節(jié)目標..
2025-06-20 17:31
【總結(jié)】北師大版九年級下冊數(shù)學圓周角:頂點在圓上,它的兩邊分別與圓還有另一個交點,像這樣的角,叫做圓周角.圓周角定理圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半.ABC●O●OABC●OABC●OABC情境導入本節(jié)目標,會熟練運用推論解決問題.2.培養(yǎng)學生觀察、分析及理解問題的能力
【總結(jié)】圓周角和圓心角的關(guān)系第三章圓第1課時圓周角和圓心角的關(guān)系導入新課講授新課當堂練習課堂小結(jié),會敘述并證明圓周角定理.能運用圓周角定理及推論解決簡單的幾何問題.(重點),會推理驗證“圓周角與圓心角的關(guān)系”.(難點)學習目標問題1什么叫圓心角?指出圖中的圓心角?頂點在圓心,角的
2025-06-17 16:41
【總結(jié)】第28章圓第三節(jié)圓周角定理岷江東路學校王萍請你說一說:?答:頂點在圓心的角叫圓心角..OBC1.當球員在B,D,E處射門時,他所處的位置對球門AC分別形成三個張角∠ABC,∠ADC,∠AEC.BACDE生活實
2024-11-21 01:34
【總結(jié)】●OBACDE特征:①角的頂點在圓上.②角的兩邊都與圓相交.1、圓周角定義:頂點在圓上,并且兩邊都和圓相交的角叫圓周角.?●OBACDE溫故知新:圓周角定理?圓周角定理一條弧所對的圓周角等于它所對的圓心角的一半.?老師提示:
2024-12-07 21:28
【總結(jié)】方今之時,僅免刑焉!福輕乎羽,莫之知載;禍重乎地,莫之知避。
2024-12-08 03:09
【總結(jié)】●OEFABC頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游戲中
2024-11-17 13:59
【總結(jié)】圓周角和圓心角的關(guān)系(1)圓周角定理1、圓心角的定義?2、在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等頂點在圓心的角為圓心角一、舊知回顧:當圓心角的頂點發(fā)生變化時,這個角的位置有哪幾種情況?圓周角:像(圖二)這樣的角∠BAC我們稱為圓周角.OBC二、探索新知:
2024-08-01 05:53
【總結(jié)】民樂縣第二中學王愛萍回顧與思考AOBN100o,1、如圖在⊙O中,∠AOB=100o,則AB的度數(shù)為______ANB的度數(shù)為______?!?60o在射門游戲中,球員射中球門的難易與他所處的位
2024-12-07 16:28
【總結(jié)】第三章圓《圓心角和圓周角的關(guān)系(第2課時)》教學設計說明佛山市華英學校郭艷鋒一.學生起點分析學生的知識技能基礎:學生在本節(jié)的第一課時,通過探索,已經(jīng)學習了圓心角和圓周角的關(guān)系,并對定理進行了嚴密的證明,通過一系列簡單的練習對這個關(guān)系熟悉,具備了靈活應用本關(guān)系解決問題的基本能力.學生活動經(jīng)驗基礎:在相關(guān)知識的學習