【文章內(nèi)容簡介】
AB的中點為原點,A、B、C艦的坐標為(3,0)、(-3,0)、(-5,2).由于B、C同時發(fā)現(xiàn)動物信號,記動物所在位置為P,則|PB|=|PC|.于是P在線段BC的中垂線上,易求得其方程為x-3y+7=0.又由A、B兩艦發(fā)現(xiàn)動物信號的時間差為4秒,知|PB|-|PA|=4,故知P在雙曲線=1的右支上.直線與雙曲線的交點為(8,5),此即為動物P的位置,利用兩點間距離公式,可得|PA|=10.據(jù)已知兩點的斜率公式,得kPA=,所以直線PA的傾斜角為60176。,于是艦A發(fā)射炮彈的方位角應(yīng)是北偏東30176。.設(shè)發(fā)射炮彈的仰角是θ,初速度v0=,則,∴sin2θ=,∴仰角θ=30176。.●錦囊妙計解決圓錐曲線綜合題,關(guān)鍵是熟練掌握每一種圓錐曲線的定義、標準方程、圖形與幾何性質(zhì),注意挖掘知識的內(nèi)在聯(lián)系及其規(guī)律,通過對知識的重新組合,以達到鞏固知識、提高能力的目的.(1)對于求曲線方程中參數(shù)的取值范圍問題,需構(gòu)造參數(shù)滿足的不等式,通過求不等式(組)求得參數(shù)的取值范圍;或建立關(guān)于參數(shù)的目標函數(shù),轉(zhuǎn)化為函數(shù)的值域.(2)對于圓錐曲線的最值問題,解法常有兩種:當題目的條件和結(jié)論能明顯體現(xiàn)幾何特征及意義,可考慮利用數(shù)形結(jié)合法解;當題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可先建立目標函數(shù),再求這個函數(shù)的最值.●殲滅難點訓(xùn)練一、選擇題1.(★★★★)已知A、B、C三點在曲線y=上,其橫坐標依次為1,m,4(1<m<4),當△ABC的面積最大時,m等于( ) B. C. D.2.(★★★★★)設(shè)u,v∈R,且|u|≤,v>0,則(u-v)2+()2的最小值為( ) 二、填空題3.(★★★★★)A是橢圓長軸的一個端點,O是橢圓的中心,若橢圓上存在一點P,使∠OPA=,則橢圓離心率的范圍是_________.4.(★★★★)一輛卡車高3米,欲通過拋物線形隧道,拱口寬恰好是拋物線的通徑長,若拱口寬為a米,則能使卡車通過的a的最小整數(shù)值是_________.5.(★★★★★)已知拋物線y=x2-1上一定點B(-1,0)和兩個動點P、Q,當P在拋物線上運動時,BP⊥PQ,則Q點的橫坐標的取值范圍是_________.三、解答題6.(★★★★★)已知直線y=kx-1與雙曲線x2-y2=1的左支交于A、B兩點,若另一條直線l經(jīng)過點P(-2,0)及