freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

自動控制原理第4章根軌跡(編輯修改稿)

2025-05-27 08:27 本頁面
 

【文章內容簡介】 *22)()()()(上式可以等效為下列兩個方程 ? ? ? ? ?kpszs njimjj 2011??????? ??????,2,1,0 ???k111* ???????niimjjpszsK前者稱為 0176。 根軌跡的相角條件,后者叫做 0176。 根軌跡的模值條件 。 與 180176。 根軌跡的幅值條件和相角條件相比較,兩者的幅值條件相同,而相角條件不同。因此, 180176。 常規(guī)根軌跡的繪制規(guī)則,原 則上可以應用于零度根軌跡的繪制,但在與相角條件相關的一些規(guī)則中,需作適當?shù)恼{整。需要調整的根軌跡的規(guī)則如下: 規(guī)則 3中根軌跡在實軸上的分布應改為:若實軸上某一線段右邊的所有開環(huán)零極點的總個數(shù)為偶數(shù),則這一線段就是根軌跡 。 規(guī)則 4中漸近線的交角應改為 mnka ???? 2 1,2,1,0 ??? mnk ? ( 429) 規(guī)則 7中根軌跡的出射角和入射角應改為: ? ? ????????????? ?????nijjppmjpzp ijiji k112 ????? ? ????????????? ?????njzpmijjzzz ijiji k112 ?????,2,1,0 ???k?,2,1,0 ???k除上述三個規(guī)則外,其他規(guī)則不變。 ( 430) ( 431) 【 例 】 非最小相位系統(tǒng)如圖 ,試繪制系統(tǒng)的根軌跡圖。 )1()21( ??ss sK)(sR )(sC??圖 例 47的系統(tǒng)結構圖 解 系統(tǒng)的開環(huán)傳遞函數(shù)為 )1()()1()21()()( *??????sssKsssKsHsG其中: KK 2* ??根據(jù)零度根軌跡的繪制規(guī)則繪制根軌跡 規(guī)則 1 在圖 “ ”和“ O”分別標識開環(huán)極點和開環(huán)零點。 ???? ? 10 0 . 5Im Re2 3 *11???Ks*22??Ks?? 1* ?K1* ?K ?圖 例 47系統(tǒng)的根軌跡圖 規(guī)則 2 根軌跡的分支數(shù)為 2;起始點為 p1=0,p2=1;終止點為 z1=。 規(guī)則 3 確定實軸上的根軌跡為 [1,0]和 (,+∞) 規(guī)則 4 根軌跡的漸近線為 nm=1條,其交角為 ????????????12002kmnkkmnka????說明漸近線與實軸重合。 規(guī)則 5 為求根軌跡的分離點和匯合點,令 A(s)=s, B(s)=s(s+1),代入 A?(s)B(s)A(s)B?(s)=0中,整理后解出上式的根為 s1=,K1*= 為分離點 。s2=, K2*= 為匯合點 將 s=jω代入上式閉環(huán)特征方程并整理得 規(guī)則 6 確定根軌跡與虛軸的交點。 閉環(huán)系統(tǒng)特征方程為: )1( **2 ???? KsKs? ? *2* ???? KjK ??令實部,虛部分別為零,得: 01 ?? 0*1 ?K ,2 ??? 1* 3,2 ?K根軌跡與虛軸的交點為 ?對應的臨界根軌跡增益為 1* ?K 10 * ?? K ?? K系統(tǒng)的穩(wěn)定范圍為 或 參量根軌跡 上面兩節(jié)介紹的根軌跡的基本繪制規(guī)則,是以根軌跡增益 K*作為參變量而得出的,這種在實際中最常見,但有時需要研究根軌跡增益 K*以外的其他參數(shù),如開環(huán)零、極點,時間常數(shù)和反饋系數(shù)等對系統(tǒng)性能的影響。這種根軌跡稱為參變量根軌跡,又稱為廣義根軌跡。 如果選擇其他參數(shù),如某一參數(shù) A為可變量時,用特征方程中不含 A的項除以特征方程得到如下形式 系統(tǒng)的開環(huán)傳遞函數(shù)為 ??????? niimjjpszsKsHsG11*)()()()(閉環(huán)系統(tǒng)的特征方程為 0)()(1)()(1)()(1)( *11* ?????????????sAsBKpszsKsHsGsD niimjj 等效開環(huán)傳遞函數(shù)中 A的位置與原開環(huán)傳遞函數(shù)中 K*的位置相當,這樣就可按前述繪制以 K*為參變量的方法來繪制以 A為參變量的根軌跡。 0)( )(1 ?? sQ sPA則 )()(sQsPA 為等效開環(huán)傳遞函數(shù),即 )()()()(11 sQsPAsHsG ?試繪制 K=6, T從零到無窮大變化時系統(tǒng)的根軌跡。 解 系統(tǒng)特征方程為 【 例 】 已知系統(tǒng)開環(huán)傳遞函數(shù) )2)(1()1()()(????sssTsKsHsG023 23 ?????? KK TssssKsss ??? 23 23 除以特征方程,得: 0231 23 ????? Ksss K T s其中, K’=6T,由于 K’所處的位置與 G(s)H(s)中 K*所處的位置相當,可以按以 K*為參變量繪制根軌跡的方法來繪制以 K’=6T為參變量的根軌跡。 等效開環(huán)傳遞函數(shù)為 KsssK T ssHsG???? 23)()( 2311當 K=6時 KsssTssHsG???? 236)()(2311)2)(3( 2 ????ssK根據(jù)前面介紹的繪制規(guī)則可得系統(tǒng)的根軌跡如圖 。 j2j2?3????0ImRe?圖 例 系統(tǒng)的根軌跡 應用根軌跡法,可以迅速確定系統(tǒng)在根軌跡增益或某一其它參數(shù)變化時閉環(huán)極點的位置,從而得到相應的閉環(huán)傳遞函數(shù)。同時可以較為簡便地計算(或估算)出系統(tǒng)的各項性能指標,包括系統(tǒng)的穩(wěn)定性、瞬態(tài)和穩(wěn)態(tài)性能指標。 系統(tǒng)的穩(wěn)態(tài)性能即穩(wěn)態(tài)誤差,與系統(tǒng)的型別和開環(huán)增益有關,它們均可從根軌跡中得到。從而求出系統(tǒng)對給定輸入的穩(wěn)態(tài)誤差。 關于系統(tǒng)的動態(tài)性能,通過下面幾小節(jié)討論。 增加開環(huán)零、極點對根軌跡的影響 由于根軌跡是由系統(tǒng)的開環(huán)零、極點確定的,因此在系統(tǒng)中增加開環(huán)零、極點或改變開環(huán)零、極點在平面上的位置,都可以改變根軌跡的形狀,從而校正系統(tǒng)性能。 實際上,增加開環(huán)零點就是在系統(tǒng)中加入超前環(huán)節(jié),產生微分作用,改變開環(huán)零點在平面上的位置就是改變微分強度。同理,增加開環(huán)極點就是在系統(tǒng)中加入滯后環(huán)節(jié),它產生積分作用,改變開環(huán)極點在平面上的位置,就可以改變積分強弱。 如果在系統(tǒng)中分別加入一對復數(shù)開環(huán)零點 2177。 4j或一個實數(shù)開環(huán)零點 4,則系統(tǒng)開環(huán)傳遞函數(shù)分別成為 設開環(huán)傳遞函數(shù)為 )()()(*?? ssKsHsG其根軌跡如圖 ( a)所示 )()42)(42()()( *??????ssjsjsKsHsG)()4()()( *???sssKsHsG和 對應的根軌跡分別如圖 ( b)和圖 ( c)所示的根軌跡,可以看出。加入開環(huán)零點后可以減少漸近線的條數(shù),改變漸近線的傾角;隨著 K*的增加,根軌跡的兩個分支向 s左半平面彎曲或移動,這相當于增大了系統(tǒng)阻尼,使系統(tǒng)的瞬態(tài)過程時間減小,提高了系統(tǒng)的相對穩(wěn)定性。另外,加入的開環(huán)零點越接近虛軸,系統(tǒng)的性能越好。上述結論可以從這三個系統(tǒng)的單位階躍相應曲線上得到印證,如圖( d)所示。圖中繪出了當 K*=4時三個系統(tǒng)的單位階躍響應,曲線 2和 3分別為原系統(tǒng),加入開環(huán)零點 2177。 4j和4以后系統(tǒng)的單位階躍響應曲線??梢娫黾雍线m的開環(huán)零點,可以改善系統(tǒng)的性能。 系統(tǒng)的閉環(huán)傳遞函數(shù)分別為 **2*2*20)()1()204(KsKsKssK??????**2*4)()4(KsKssK????和 ImRe 0 . 8? 0 . 4?012 1 2ImRe 0 . 8?012 1 234 3 4 2 3 ?? ImRe 0 . 8?012 1 234 3 4 2 3 4 5 6 7 ty0 2 4 6 8 1000 . 511 . 52123( a)原系統(tǒng)的根軌跡圖 ( b)加開環(huán)零點 2177。 4j后 系 統(tǒng) 的根 軌跡圖 ( c)加開環(huán)零點 4后系統(tǒng)的根軌跡圖 ( d)系統(tǒng)單位階躍響應曲線 圖 增加開環(huán)零點后系統(tǒng)的根軌跡及其響應曲線 同樣利用上例進行討論。在原系統(tǒng)上分別增加一對復數(shù)開環(huán)極點 2177。 4j和一個實數(shù)開環(huán)極點 4,則系統(tǒng)的開環(huán)傳遞函數(shù)分別為 )42)(42)(()()(*jsjsssKsHsG??????)4)(()()(*??? sssKsHsG和 系統(tǒng)的閉環(huán)傳遞函數(shù)分別為 *234* KssssK???? 和 *23* KsssK???對應的根軌跡分別如圖 ( a)所示。 24 2 4 2 424ImRe???2 2 4 2 424??ImRety0 5 10 15 2000 . 511 . 52132( a)增加開環(huán)極點 2+4j后的根軌跡 ( b)增加開環(huán)極點 4后系統(tǒng)的根軌跡 ( c)系統(tǒng)單位階躍響應曲線 圖 增加開環(huán)極點后的系統(tǒng)的根軌跡及其響應曲線 將圖 ( a)和( b)與原始系統(tǒng)根軌跡圖 ( a)相比較,可以看出,加入開環(huán)極點后增加了系統(tǒng)的階數(shù),改變了漸近線的傾角,增加了漸近線的條數(shù)。隨著 K*的增加,根軌跡的兩個
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1