【總結】高中數(shù)學精講精練第九章圓錐曲線【知識圖解】【方法點撥】解析幾何是高中數(shù)學的重要內容之一,也是銜接初等數(shù)學和高等數(shù)學的紐帶。而圓錐曲線是解析幾何的重要內容,因而成為高考考查的重點。研究圓錐曲線,無外乎抓住其方程和曲線
2025-08-11 14:54
【總結】求圓錐曲線的最值常用哪些方法?圓錐曲線中的最值問題(一)呢?拋物線又如何進行換元若將橢圓換成雙曲線、.1如何求其范圍呢?換成若將???xyyx想一想OyxOyxpxy22?12222??byax換元法判別式法Q(3,4)P利用幾何意義
2025-11-21 12:26
【總結】雙曲線的簡單幾何性質(3)雙曲線的焦半徑一般地,若P(x0,y0)是橢圓(ab0)上任意一點,則點P到左焦點F1的距離為:點P到右焦點F2的距離為:12222??byaxxyOF1
2025-08-05 04:06
【總結】雙曲線的簡單幾何性質(3)雙曲線的焦半徑懷化鐵路第一中學陳娟一般地,若P(x0,y0)是橢圓(ab0)上任意一點,則點P到左焦點F1的距離為:點P到右焦點F2的距離為:12222??
2025-08-04 14:32
【總結】?解析幾何的產生?十六世紀以后,由于生產和科學技術的發(fā)展,天文、力學、航海等方面都對幾何學提出了新的需要。比如,德國天文學家開普勒發(fā)現(xiàn)行星是繞著太陽沿著橢圓軌道運行的,太陽處在這個橢圓的一個焦點上;意大利科學家伽利略發(fā)現(xiàn)投擲物體試驗著拋物線運動的。這些發(fā)現(xiàn)都涉及到圓錐曲線,要研究這些比較復雜的曲線,原先的一套方法顯然已經(jīng)不適應了
2025-08-05 10:19
【總結】......專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學2018屆高三上學期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標準方程;(Ⅱ)證明:在軸上存在定點,使得為定
2025-04-17 13:05
【總結】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構建不等式xy設分別是橢圓的左、右焦點,若在直線上存在點P,使線段的中垂線過點,求橢圓離心率的取值范圍.解法一:設P,F(xiàn)1P的中點Q的坐標為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因為y2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
2025-03-25 00:03
【總結】WORD資料可編輯高三文科數(shù)學專題復習之圓錐曲線知識歸納:名稱橢圓雙曲線圖象定義平面內到兩定點的距離的和為常數(shù)(大于)的動點的軌跡叫橢圓即當2﹥2時,軌跡
2025-04-17 13:10
【總結】高考圓錐曲線壓軸題型總結直線與圓錐曲線相交,一般采取設而不求,利用韋達定理,在這里我將這個問題分成了三種類型,其中第一種類型的變式比較多。而方程思想,函數(shù)思想在這里也用得多,兩種思想可以提供簡單的思路,簡單的說就是只需考慮未知數(shù)個數(shù)和條件個數(shù),。使用韋達定理時需注意成立的條件。題型一:條件和結論可以直接或經(jīng)過轉化后可用兩根之和與兩根之積來處理1.
2025-10-01 10:10
【總結】......橢圓與雙曲線的對偶性質--(必背的經(jīng)典結論)橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,
2025-04-17 13:07
【總結】高考圓錐曲線的考查特點及變化趨勢解析幾何是數(shù)學發(fā)展過程中的標志性成果,是微積分創(chuàng)立的基礎。圓錐曲線與方程專題可以讓學生通過建立坐標系,借助圓錐曲線的幾何特征,導出相應的方程;用代數(shù)方法研究它們的幾何性質,體會數(shù)與形的結合;這部分內容是高考試題的重要組成部分。2022年全國13套高考試卷對本專題考查的考
2025-08-07 11:09
【總結】......圓錐曲線的焦點三角形問題一焦點直角三角形【注】上述結論在雙曲線中亦成立,請同學們仿照橢圓的證明過程自行證明.【小結】焦點直角三角形是焦點三角形的一種特殊情況,故很多量均為定值,作為結論記
2025-03-25 00:04
【總結】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-25 00:15
【總結】高考專題圓錐曲線中的最值和范圍問題★★★高考要考什么1 圓錐曲線的最值與范圍問題(1)圓錐曲線上本身存在的最值問題:①橢圓上兩點間最大距離為2a(長軸長).②雙曲線上不同支的兩點間最小距離為2a(實軸長).③橢圓焦半徑的取值范圍為[a-c,a+c],a-c與a+c分別表示橢圓焦點到橢圓上的點的最小距離與最大距離.④拋物線上的點中頂點與拋物線的準線距離最近.
2025-08-05 19:25
【總結】......學習參考 橢 圓典例精析題型一 求橢圓的標準方程【例1】已知點P在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P
2025-04-17 13:13