【總結(jié)】平面幾何知識點匯總(一)知識點一相交線和平行線對頂角的性質(zhì):對頂角相等。:性質(zhì)1:過一點有且只有一條直線與已知直線垂直。性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。:經(jīng)過直線外一點有且只有一條直線與已知直線平行。平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。:性質(zhì)1:兩直線平行,同位角相等。性質(zhì)2:兩直線平
2025-06-24 15:21
【總結(jié)】第一章相交線與平行線1.鄰補角:兩條直線相交所構(gòu)成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角,如∠1與∠2。且∠1+∠2=180°2.對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,像這樣的兩個角互為對頂角,如∠2與∠4。對頂角的性質(zhì):對頂角相等,即∠2=∠4,∠1=∠3:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
2025-06-26 21:33
【總結(jié)】平面解析幾何初步復(fù)習(xí)課教學(xué)設(shè)計(一)教材分析解析幾何的主要內(nèi)容為直線與圓,圓錐曲線,坐標(biāo)系與參數(shù)方程。根據(jù)課程標(biāo)準(zhǔn)要求,在必修2解析幾何初步中,學(xué)生學(xué)習(xí)的最基本內(nèi)容為直線與直線方程,圓與圓的方程,并初步建立空間坐標(biāo)系的概念。這一內(nèi)容是對全體學(xué)生設(shè)計的,大部分學(xué)生在選修中還將進一步學(xué)習(xí)圓錐曲線,坐標(biāo)系與參數(shù)方程等有關(guān)內(nèi)容。因此,本章要求學(xué)生掌握解析幾何最基本的思想方法--------用代數(shù)
2025-04-17 01:01
【總結(jié)】蘇州分公司金閶校區(qū)數(shù)學(xué)組XueDaPersonalizedEducationDevelopmentCenter專題:解析幾何中的動點軌跡問題學(xué)大蘇分教研中心周坤軌跡方程的探求是解析幾何中的基本問題之一,也是近幾年各省高考中的常見題型之一。解答這類問題,需要善于揭示問題的內(nèi)部規(guī)律及知識之間的相互聯(lián)系。本專題分成四個部分,首先從題目類型出發(fā),總結(jié)常見的幾類動點軌跡問
2025-03-24 05:55
【總結(jié)】《直線和圓》常用結(jié)論1、傾斜角的定義及范圍:當(dāng)直線非水平線時,:[0,л)2、直線的斜率定義和斜率公式:斜率定義:(是直線的非直角傾斜角)斜率公式:過點的直線的斜率為:.斜率的幾何意義:非豎直直線上的任一個點向右運動一個單位,縱方向的改變量.3、把垂直于直線的向量叫做直線的法向量,.已知點,則(1)與向量平行的直線的方程可設(shè)為:;(2)與向量垂直的直線的方程可
2024-08-18 16:45
【總結(jié)】解析幾何中的基本公式1、兩點間距離:若,則2、平行線間距離:若則:注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。3、點到直線的距離:則P到l的距離為:4、直線與圓錐曲線相交的弦長公式:消y:,務(wù)必注意若l與曲線交于A
2025-06-18 01:03
【總結(jié)】高中課程復(fù)習(xí)專題1高中課程復(fù)習(xí)專題——數(shù)學(xué)立體幾何一空間幾何體㈠空間幾何體的類型1多面體:由若干個平面多邊形圍成的幾何體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點。2旋轉(zhuǎn)體:把一個平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)
2024-12-17 02:36
【總結(jié)】8平面解析幾何內(nèi)容概述解析幾何是17世紀(jì)數(shù)學(xué)發(fā)展的重大成果之一,其本質(zhì)是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學(xué)思想。與課程改革前相比,中學(xué)解析幾何變化不大,主體內(nèi)容仍然是:直線與方程、圓與方程、圓錐曲線與方程。只是前兩者作為必修模塊,統(tǒng)稱為平面解析幾何初步,第三者則放到選修1-1和選修2-1中。另外,還在平面解析幾何初
2024-08-24 23:35
【總結(jié)】x橫軸y縱軸z豎軸?定點o空間直角坐標(biāo)系三個坐標(biāo)軸的正方向符合右手系.即以右手握住z軸,當(dāng)右手的四個手指從正向x軸以2?角度轉(zhuǎn)向正向y軸時,大拇指的指向就是z軸的正向.一、空間點的直角坐標(biāo)Ⅶxyozxoy面yoz面zox面
2024-08-14 16:47
【總結(jié)】空間解析幾何第六章§6-2向量及其坐標(biāo)表示法?向量概念及其加減法?向量的坐標(biāo)上一張下一張向量(矢量):既有大小又有方向的量.有向線段.1M2M??a?21MM模長為1的向量。零向量:模長為0的向量0?||a?21MM||向量的模:向量
2024-07-29 07:10
【總結(jié)】第4章 向量代數(shù)與空間解析幾何習(xí)題解答一、計算題與證明題1.已知,,,并且.計算.解:因為,,,并且所以與同向,且與反向因此,,所以2.已知,,求.解:(1)(2)得所以3.設(shè)力作用在點,求力對點的力矩的大?。猓阂驗?所以力矩所以,力矩的大小為
2024-08-14 10:17
【總結(jié)】初中數(shù)學(xué)幾何知識點總結(jié)大全(轉(zhuǎn))?(2010-08-2416:21:45)轉(zhuǎn)載▼標(biāo)簽:?教育1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與
2025-04-04 03:46
【總結(jié)】幾何圖形初步第一節(jié)幾何圖形認識立體圖形(1)幾何圖形:從實物中抽象出的各種圖形叫幾何圖形.幾何圖形分為立體圖形和平面圖形.(2)立體圖形:有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一個平面內(nèi),這就是立體圖形.(3)重點和難點突破:結(jié)合實物,認識常見的立體圖形,如:長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等.能區(qū)分立體圖形與平面圖形,立體圖形占有
2025-06-24 15:20
【總結(jié)】沒有學(xué)不好的數(shù)學(xué)系列之二:初中幾何知識點詳解證明一,證明二,證明三,解直角三角形,圓證明(一)1、本套教材選用如下命題作為公理:(1)、兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。(2)、兩條平行線被第三條直線所截,同位角相等。(3)、兩邊及其夾角對應(yīng)相等的兩個三角形全等。(4)、兩角及其夾邊對應(yīng)相等的兩個三角形全等。(5)、三邊對應(yīng)相
2025-06-27 13:29
【總結(jié)】必修2第一章空間幾何體知識點總結(jié)正視圖:光線從幾何體的前面向后面正投影得到的投影圖;反映了物體的高度和長度側(cè)視圖:光線從幾何體的左面向右面正投影得到的投影圖;反映了物體的高度和寬度俯視圖:光線從幾何體的上面向下面正投影得到的投影圖。反映了物體的長度和寬度三視圖中反應(yīng)的長、寬、高的特點:“長對正”,“高平齊”,“寬相等”斜二測畫法的基本步驟:①建立適當(dāng)直角坐標(biāo)
2025-06-25 00:24