【總結(jié)】勾股定理單元復習一、知識要點:1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三邊長分別是a,b,c,且滿足a2+b2=c2,那么三角形ABC是直角三角形。這個定理叫
2025-04-16 23:53
【總結(jié)】1勾股定理班級姓名學號知識點復習::直角三角形等于。幾何語言表述:如圖,在RtΔABC中,?C=90°。
2024-11-21 05:58
【總結(jié)】勾股定理復習(二)回顧本章內(nèi)容:直角三角形三邊關(guān)系勾股定理cba直角三角形a2+b2=c2直角三角形的判別cbaa2+b2=c2直角三角形(形)(數(shù))(形)(數(shù))Rt?ABC中,AB=c,BC=a,AC=b,?B=90?.(1)
2024-10-12 10:56
【總結(jié)】惠東縣初中教案編寫評比八年級數(shù)學(人教版)§(第一課時)編寫者單位:編寫者:編寫日期:2012-6-28《》教學設(shè)計教????材義務(wù)教育課程標準實驗教科書(人教版)《數(shù)學》八年級下冊設(shè)計理念從學生已有的生活經(jīng)驗和認知基礎(chǔ)
2025-04-16 23:55
【總結(jié)】勾股定理的逆定理教案 勾股定理的逆定理教案1一、內(nèi)容和內(nèi)容解析 1。內(nèi)容 應(yīng)用勾股定理及勾股定理的逆定理解決實際問題。 2。內(nèi)容解析 運用勾股定理的逆定理可以從三角形...
2024-12-06 22:46
【總結(jié)】初中數(shù)學點、線、角的定理點的定理:過兩點有且只有一條直線點的定理:兩點之間線段最短角的定理:同角或等角的補角相等角的定理:同角或等角的余角相等直線定理:過一點有且只有一條直線和已知直線垂直直線定理:直線外一點與直線上各點連接的所有線段中,垂線段最短?初中數(shù)學幾何平行定理平行定理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行推論:如果兩條直線都和第三
2025-04-04 03:47
【總結(jié)】勾股定理及其逆定理專題復習,5,x為邊組成直角三角形,則x應(yīng)滿足()A. B. C. D.圖(3)A10064:3,其差為2㎝,則三角形的周長是( )㎝ ㎝ ㎝ ㎝(3),正方形A的面積為()A.6B.36C.64D.84.若線段a,b,c組成Rt△,則它們的比為( )A、2∶
【總結(jié)】您還在為學不好數(shù)學而躊躇嗎?那么就捧起這本資深人士編著的《初中數(shù)學公式定理及復習題大全》吧,這里有無數(shù)名師上課學習的精華,讓您流連忘返。2012zhongkao傾情奉獻一:公式定理1、整數(shù)(包括:正整數(shù)、0、負整數(shù))和分數(shù)(包括:有限小數(shù)和無限環(huán)循小數(shù))都是有理數(shù).如:-3,
2025-08-18 16:31
【總結(jié)】初二數(shù)學《勾股定理與實數(shù)》單元復習卷班級____姓名一、選擇題1.在3-,,,,,,2…中,無理數(shù)有()A.6個 B.5個 C.4個 D.3個2.的立方根是()A.±2B.±4C.4
2025-04-16 22:25
【總結(jié)】課題名稱勾股定理復習科目數(shù)學學生、年級8年級課時1教師彭健一、教材內(nèi)容分析勾股定理是初中數(shù)學中的重要內(nèi)容,它不僅溝通了數(shù)與形之間的聯(lián)系,而且也是解決許多數(shù)學問題和實際問題的有力工具。新課標對這一內(nèi)容明確規(guī)定:會運用勾股定理解單問題;會運用勾股定理逆定理判定直角三角形。因此,學生對這一內(nèi)容的熟練掌握是至關(guān)重要的。二、學習者特征分析
2025-04-16 22:27
【總結(jié)】第一篇:勾股定理教案 一,課題:勾股定理(八年級下冊第十八章——勾股定理) 二,教學類型:新知課 三,教學目的:讓學生了解勾股定理的產(chǎn)生及其內(nèi)容。 四,教學方法:講解法 五,教學重難點:如何...
2024-11-18 23:10
【總結(jié)】學習目標1、掌握勾股定理及逆定理。2、會運用勾股定理及逆定理解決問題?;仡櫯c思考-----------勾股定理1、直角三角形的邊、角之間分別存在著什么關(guān)系?2、如何判別一個三角形是否為直角三角形?請你舉例說明。3、請你舉一個生活中的實例,并應(yīng)用勾股定理解決它。
2024-11-06 13:13
【總結(jié)】4勾股定理及其逆定理復習典型例題1.勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)勾股定理的逆定理:如果三角形的三邊長:a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。2.勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反
【總結(jié)】章節(jié)性質(zhì)判定線1、過兩點有且只有一條直線。2、兩點之間線段最短。3、過一點有且只有一條直線和已知直線垂直。4、直線外一點與直線上任意點連接的線段中,垂線段最短5、線段垂直平分線上的點到這條線段兩個端點的距離相等1、到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上平行線1、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行2、兩直線
2025-04-04 03:45
【總結(jié)】八年級數(shù)學(下冊)?人教版初二數(shù)學教研組如果直角三角形的兩條直角邊長分別為a、b,斜邊為c,那么a2+b2=c2注意:勾股定理只適用在直角三角形中求邊之間的關(guān)系!什么叫勾股定理?如果直角三角形的
2024-11-10 22:33