【總結(jié)】第一章《勾股定理》單元測(cè)試卷班別:姓名:__________ 一、選擇題(本題共10小題,每小題3分,滿分30分)1.一直角三角形的斜邊長(zhǎng)比一直角邊長(zhǎng)大2,另一直角邊長(zhǎng)為6,則斜邊長(zhǎng)為( ?。? A.4B.8C.10 D.12
2025-06-24 19:35
【總結(jié)】第一章勾股定理勾股定理的應(yīng)用◎新知梳理1.在運(yùn)用勾股定理解決數(shù)學(xué)問(wèn)題中,首先應(yīng)構(gòu)造直角三角形,再利用已知兩邊的長(zhǎng)求第三邊;或已知其中的一邊,及其中兩邊的數(shù)量關(guān)系,通過(guò)建立方程求出這兩邊的長(zhǎng)度.2.如圖,若圓柱的底面周長(zhǎng)是40cm,高是30cm,從圓柱底部A處沿側(cè)面纏繞一圈絲線到頂部B處做裝飾,求這條
2025-06-21 12:20
【總結(jié)】第一章勾股定理1探索勾股定理第2課時(shí)驗(yàn)證勾股定理及其簡(jiǎn)單應(yīng)用第一章勾股定理A知識(shí)要點(diǎn)分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.已知:如圖1-1-7,用四塊兩直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c的直角三角形拼成一個(gè)正方形,求圖形中央的小正方形的面積.解法(1)
2025-06-19 12:14
2025-06-15 07:22
【總結(jié)】第一篇:新北師大版八年級(jí)數(shù)學(xué)下冊(cè)第一章定理梳理 新北師大版八年級(jí)數(shù)學(xué)下冊(cè)第一章定理梳理等腰三角形 1、兩角分別相等且其中一組等角的對(duì)邊相等的兩個(gè)三角形全等。(AAS) 2、全等三角形的對(duì)應(yīng)邊相等...
2024-11-16 00:33
【總結(jié)】第一章勾股定理探索勾股定理第2課時(shí)勾股定理的驗(yàn)證及簡(jiǎn)單應(yīng)用◎新知梳理1.勾股定理的驗(yàn)證:如圖甲是任意一個(gè)Rt△ABC,它的兩條直角邊的邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c.如圖乙、丙那樣分別取四個(gè)與Rt△ABC全等的三角形,放在邊長(zhǎng)為(a+b)的正方形內(nèi).(1)圖乙和圖丙中①
2025-06-19 22:21
【總結(jié)】第一章勾股定理1探索勾股定理2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?B認(rèn)識(shí)勾股定理直角三角形兩直角邊的等于斜邊的,如果用a、b、c分別表示直角三角形的兩直角邊和斜邊,那么.自我診斷1.1.在△ABC中,∠C=90°,a、
2025-06-20 20:23
【總結(jié)】第一章勾股定理1探索勾股定理第1課時(shí)探索勾股定理第一章勾股定理A知識(shí)要點(diǎn)分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練A知識(shí)要點(diǎn)分類練第1課時(shí)探索勾股定理知識(shí)點(diǎn)1勾股定理1.若一個(gè)直角三角形的兩直角邊的長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,則下列關(guān)于a,b,
2025-06-17 21:20
【總結(jié)】第一章勾股定理探索勾股定理第1課時(shí)勾股定理◎新知梳理1.勾、股、弦:在直角三角形中______________稱為勾,______________稱為股,______稱為弦.2.直角三角形的三邊關(guān)系:直角三角形兩條______的平方和等于______的平方.(此
【總結(jié)】第一章勾股定理3勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?B立體圖形表面兩點(diǎn)之間的最短距離求立體圖形表面兩點(diǎn)之間的最短距離問(wèn)題.解決此類問(wèn)題的依據(jù)是:兩點(diǎn)之間,最短.為此需先將立體圖形的表面展開,將立體圖形轉(zhuǎn)化為圖形;再作兩點(diǎn)之間的,構(gòu)造直角三角形;最后通過(guò)
2025-06-20 12:13
2025-06-18 12:27
【總結(jié)】八年級(jí)數(shù)學(xué)上--勾股定理基礎(chǔ)練習(xí)考點(diǎn)一:勾股定理:對(duì)于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有;即:直角三角形兩直角邊的平方和等于斜邊的平方。題型一:直接考查勾股定理1、在中,.⑴已知,.則的長(zhǎng)⑵已知,,則的長(zhǎng)題型二:利用勾股定理測(cè)量長(zhǎng)度1、如右圖如果梯子的底端離建筑物9米,那么15米長(zhǎng)的梯子可以
2025-04-04 03:27
【總結(jié)】第一章勾股定理專題訓(xùn)練(一)借助勾股定理尋找最短路徑1.如圖1-ZT-1,有兩棵樹,一棵樹高10米,另一棵樹高4米,兩樹相距8米.一只鳥從一棵樹的樹梢飛到另一棵樹的樹梢,則小鳥至少飛行()A.8B.10米C.12米D.14米
2025-06-17 21:18
【總結(jié)】第一章勾股定理專題突破一勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?B類型1利用勾股定理求線段長(zhǎng)1.在△ABC中,AB=AC=5,BC=6.若點(diǎn)P在邊AC上移動(dòng),求BP最小值是多少?解:過(guò)A作AD⊥BC于D,∵AB=AC=5,BC=6
2025-06-21 05:34