【總結(jié)】第一篇:幾何證明題的技巧 幾何證明題的技巧 1)證明線段相等,角相等的題,通常找到線段所在圖形,證明全等 2)隱藏條件:比如特殊圖形的性質(zhì)自己要清楚,有些時(shí)候幾何題做不出來(lái)就是因?yàn)闆](méi)有利用好隱藏...
2024-10-21 22:38
【總結(jié)】垂徑定理、弦、弧、圓心角、圓周角練習(xí)1.已知:AB交圓O于C、D,且AC==OB嗎?為什么?2.如圖所示,是一個(gè)直徑為650mm的圓柱形輸油管的橫截面,若油面寬AB=600mm,求油面的最大深度。3.如圖所示,AB是圓O
2025-08-05 04:45
【總結(jié)】有關(guān)切線的證明題09、9、4l有關(guān)切線的證明題1、如圖,是的直徑,切于點(diǎn),交于,連接。求證:是的切線.《北京中考復(fù)習(xí)指導(dǎo)》P912、中半徑于,是延長(zhǎng)線上一點(diǎn),是上一點(diǎn),連接交于點(diǎn),若。求證:是切線。3、《北京中考復(fù)習(xí)指導(dǎo)》P95如圖,
2025-03-25 03:55
【總結(jié)】微分中值定理的證明、推廣以及應(yīng)用【摘要】微分中值定理在高等數(shù)學(xué)中占有非常重要的地位,微分中值定理主要包括:拉格朗日中值定理,羅爾中值定理,以及柯西中值定理。本文主要對(duì)羅爾中值定理的條件做一些適當(dāng)?shù)母淖儯艿贸鋈缦乱恍┙Y(jié)論,
2025-06-24 23:00
【總結(jié)】本科生畢業(yè)論文(設(shè)計(jì))題 目微分中值定理的證明與應(yīng)用分析姓 名馬華龍學(xué)號(hào)2009145154院 系電氣與自
2025-06-29 13:13
【總結(jié)】第一篇:菱形的判定證明題練習(xí) 菱形的判定證明題練習(xí) 1如圖,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于點(diǎn)E.求證:四邊形AECD是菱形. C BAE已知:如圖,在ABCD...
2024-10-16 15:46
【總結(jié)】第一篇:平行證明題 線面,面面平行證明題 ,在四棱錐P-ABCD中,底面ABCD是平行四邊形,E、F分別是棱AD、PB的中點(diǎn),求證:直線EF∥平面PCD P D F C E A B ...
2024-10-27 23:35
【總結(jié)】第一篇:數(shù)列證明題 1、已知數(shù)列{an}滿足a1=1,an+1=3an+1.(Ⅰ)證明an+1是等比數(shù)列,并求{an}的通項(xiàng)公式; {2} 2數(shù)列{an}滿足a1=1,a2=2,an+2=2an...
2024-10-29 04:03
【總結(jié)】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED并延長(zhǎng)分別交AD、AB于F、G(1)求證:EF=EG;(2)當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).AFDEBC2、已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE=AF.(
2025-03-24 12:13
【總結(jié)】初中數(shù)學(xué):幾何證明題的思路要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。下面瑞德特老師整理了各類(lèi)幾何證明題的解題思路及常用的定理,供同學(xué)們參考。幾何證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對(duì)于證明題,有三種思考方式:(1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。(2)逆向
2025-04-04 03:50
【總結(jié)】第一篇:幾何證明題 幾何證明題集(七年級(jí)下冊(cè)) 姓名:_________班級(jí):_______ 一、互補(bǔ)”。 E D 二、證明下列各題: 1、如圖,已知∠1=∠2,∠3=∠D,求證:DB/...
2024-10-27 12:50
【總結(jié)】幾何證明◆典例精析【例題1】(天津)已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖①,若半徑為r1的⊙O1是Rt△ABC的內(nèi)切圓,求r1;(2)如圖②,若半徑為r2的兩個(gè)等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2;(3)如圖③,當(dāng)n是大于2的正整數(shù)時(shí),若半徑為rn的n個(gè)等
2025-03-24 06:14
【總結(jié)】軸對(duì)稱專題[軸對(duì)稱圖形]如果一個(gè)圖形沿某一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形,這條直線就是它的對(duì)稱軸.毛有的軸對(duì)稱圖形的對(duì)稱軸不止一條,如圓就有無(wú)數(shù)條對(duì)稱軸.[軸對(duì)稱]有一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱,這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)
2025-03-24 03:56
【總結(jié)】學(xué)年論文題目:微分中值定理的證明及應(yīng)用學(xué)院:數(shù)學(xué)與信息科學(xué)學(xué)院專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)學(xué)生姓名:***學(xué)號(hào):*****
2025-01-16 14:17
【總結(jié)】第一篇:考研數(shù)學(xué)證明題三大解題方法 考研數(shù)學(xué)證明題三大解題方法 縱觀近十年考研數(shù)學(xué)真題,大家會(huì)發(fā)現(xiàn):幾乎每一年的試題中都會(huì)有一個(gè)證明題,而且基本上都是應(yīng)用中值定理來(lái)解決問(wèn)題的。但是要參加碩士入學(xué)數(shù)...
2024-10-25 02:19