【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用勾股定理
2025-03-25 06:44
【總結(jié)】2015年高考立體幾何大題試卷1.【2015高考新課標(biāo)2,理19】如圖,長(zhǎng)方體中,,,,點(diǎn),分別在,上,.過(guò)點(diǎn),的平面與此長(zhǎng)方體的面相交,交線圍成一個(gè)正方形.DD1C1A1EFABCB1(1題圖)(Ⅰ)在圖中畫出這個(gè)正方形(不必說(shuō)出畫法和理由);(Ⅱ)求直線與平面所成角的正弦值.2.【2015江蘇高考,16】如圖,在直三棱柱
2025-04-17 00:05
【總結(jié)】立體幾何(幾何法)—等體積轉(zhuǎn)化例1(2013年高考上海卷(理))如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.【答案】因?yàn)锳BCD-A1B1C1D1為長(zhǎng)方體,故,故ABC1D1為平行四邊形,故,顯然B不在平面D1AC上,于是直線BC1平行于平面DA1C;直線BC1到平面D1
2025-06-24 19:01
【總結(jié)】柱體、錐體、臺(tái)體的表面積?一、選擇題1.正四棱柱的對(duì)角線長(zhǎng)是9cm,全面積是144cm2,則滿足這些條件的正四棱柱的個(gè)數(shù)是()A.0個(gè)B.1個(gè)C.2個(gè)D.無(wú)數(shù)個(gè)2.三棱柱ABC—A1B1C1中,AB=AC,且側(cè)面A1ABB1與側(cè)面A1ACCl的面積相等,則∠BB1C1
【總結(jié)】第一篇:立體幾何證明大題2 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點(diǎn),BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、...
2025-11-03 12:45
【總結(jié)】大成培訓(xùn)立體幾何強(qiáng)化訓(xùn)練,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F分別是AB,BD的中點(diǎn).求證:(Ⅰ)直線EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點(diǎn),點(diǎn)D在B1C1上,A
2025-04-04 05:14
【總結(jié)】高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面
2025-06-26 05:02
【總結(jié)】高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)
2025-06-26 04:58
【總結(jié)】立體幾何大題的答題規(guī)范與技巧一、對(duì)于空間中的定理與判定,除公理外都要明確寫出條件,才有結(jié)論。需要多個(gè)條件時(shí),要逐個(gè)寫出。對(duì)于平面幾何中的結(jié)論,要求寫出完整的條件,可以省略部分證明過(guò)程。二、一般地,有多個(gè)小題時(shí),前幾小題應(yīng)該用幾何法,可以節(jié)省時(shí)間。最后一小題若幾何法較復(fù)雜,可以用坐標(biāo)法。三、建坐標(biāo)系的要求:使更多的點(diǎn)在坐標(biāo)軸上,坐標(biāo)系最好在幾何體的內(nèi)部。四、采用
2025-04-09 05:51
【總結(jié)】,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面角A-BACBA1B1C1DED-C為60
2025-06-26 04:57
【總結(jié)】立體幾何大題訓(xùn)練(1)1、如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的等邊三角形,AA1⊥底面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=B1F=2FB.(1)證明:平面AEF⊥平面ACC1A1;(2)若AA1=3,求直線AB與平面AEF所成角的正弦值.2、如圖,在四棱錐中,平
2025-03-25 06:43
【總結(jié)】高中數(shù)學(xué)立體幾何大題訓(xùn)練,在長(zhǎng)方體中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn)(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;(Ⅱ)證明:平面ABM⊥平面A1B1M1,在矩形中,點(diǎn)分別在線段上,.沿直線將翻折成,使平面.(Ⅰ)求二面角的余弦值;(Ⅱ)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,使與重合,求線段的長(zhǎng)。,直三棱柱中
【總結(jié)】19.如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn).(1)求證:DE⊥BC;(2)求三棱錐E﹣BCD的體積.【考點(diǎn)】直線與平面垂直的性質(zhì);棱柱、棱錐、棱臺(tái)的體積.【專題】證明題;數(shù)形結(jié)合;數(shù)形結(jié)合法;立體幾何.【分析】(1)取BC中點(diǎn)F,連結(jié)EF,AF,由直棱柱的結(jié)構(gòu)特征和中位線定理可得四邊形ADEF是平行四
2025-03-26 05:39
【總結(jié)】2020.12.151、長(zhǎng)方體的體積DABCD1A1B1C1等底等高柱體的體積相等嗎?2、柱體的體積定理:等底等高柱體的體積相等3、錐體的體積定理:等底等高錐體的體積相等4、臺(tái)體的體積柱、錐、臺(tái)體積的關(guān)系5、球的體積課本P54例1(考察柱體體積公式)求此棱柱挖去圓
2025-11-01 02:14
【總結(jié)】WORD格式整理高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱AB