【總結(jié)】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運用勾股定理
2025-03-25 06:44
【總結(jié)】2015年高考立體幾何大題試卷1.【2015高考新課標2,理19】如圖,長方體中,,,,點,分別在,上,.過點,的平面與此長方體的面相交,交線圍成一個正方形.DD1C1A1EFABCB1(1題圖)(Ⅰ)在圖中畫出這個正方形(不必說出畫法和理由);(Ⅱ)求直線與平面所成角的正弦值.2.【2015江蘇高考,16】如圖,在直三棱柱
2025-04-17 00:05
【總結(jié)】23高中數(shù)學(xué)新夢想教育中心授課老師;沈源立體幾何大題的解題技巧——綜合提升【命題分析】高考中立體幾何命題特點:,將側(cè)重于垂直關(guān)系.“角”與“距離”的計算常在解答題中綜合出現(xiàn).、性質(zhì)多在選擇題,填空題出現(xiàn).、四棱柱、三棱錐的問題,特別是與球有關(guān)的問題將是
【總結(jié)】立體幾何空間直線解答題空間直線解答題1、在空間四邊形ABCD中,各邊長和對角線長均為a,點E、F分別是BD、AC的中點,求異面直線AE和BF所成的角.2、如圖,空間四邊形ABCD中,AB=AD=2,BC=DC=1,AD和
2024-11-11 13:18
【總結(jié)】第一篇:立體幾何證明大題2 立體幾何證明大題 1.如圖,四面體ABCD中,AD^平面BCD,E、F分別為AD、AC的中點,BC^CD.求證:(1)EF//平面BCD(2)BC^平面ACD. 2、...
2024-11-12 12:45
【總結(jié)】大成培訓(xùn)立體幾何強化訓(xùn)練,在四面體ABCD中,CB=CD,AD⊥BD,點E,F分別是AB,BD的中點.求證:(Ⅰ)直線EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點,點D在B1C1上,A
2025-04-04 05:14
【總結(jié)】高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面
2025-06-26 05:02
【總結(jié)】,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點,DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面角A-BACBA1B1C1DED-C為60
2025-06-26 04:57
【總結(jié)】立體幾何大題訓(xùn)練(1)1、如圖,三棱柱ABC-A1B1C1的底面是邊長為2的等邊三角形,AA1⊥底面ABC,點E,F(xiàn)分別是棱CC1,BB1上的點,且EC=B1F=2FB.(1)證明:平面AEF⊥平面ACC1A1;(2)若AA1=3,求直線AB與平面AEF所成角的正弦值.2、如圖,在四棱錐中,平
2025-03-25 06:43
【總結(jié)】高中數(shù)學(xué)立體幾何大題訓(xùn)練,在長方體中,AB=AD=1,AA1=2,M是棱CC1的中點(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;(Ⅱ)證明:平面ABM⊥平面A1B1M1,在矩形中,點分別在線段上,.沿直線將翻折成,使平面.(Ⅰ)求二面角的余弦值;(Ⅱ)點分別在線段上,若沿直線將四邊形向上翻折,使與重合,求線段的長。,直三棱柱中
【總結(jié)】19.如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點.(1)求證:DE⊥BC;(2)求三棱錐E﹣BCD的體積.【考點】直線與平面垂直的性質(zhì);棱柱、棱錐、棱臺的體積.【專題】證明題;數(shù)形結(jié)合;數(shù)形結(jié)合法;立體幾何.【分析】(1)取BC中點F,連結(jié)EF,AF,由直棱柱的結(jié)構(gòu)特征和中位線定理可得四邊形ADEF是平行四
2025-03-26 05:39
【總結(jié)】全國各地高考文科數(shù)學(xué)試題分類匯編:立體幾何1.[·重慶卷20]如圖1-4所示四棱錐P-ABCD中,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M為BC上一點,且BM=.(1)證明:BC⊥平面POM;(2)若MP⊥AP,求四棱錐P-ABMO的體積.
【總結(jié)】WORD格式整理高考立體幾何大題及答案1.(2009全國卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點在側(cè)棱上,。(I)證明:是側(cè)棱的中點;求二面角的大小。2.(2009全國卷Ⅱ文)如圖,直三棱柱AB
2025-06-26 04:58
【總結(jié)】立體幾何四大綜合類型向量的常用方法:①利用法向量求點到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點B到平面的距離為.②.異面直線間的距離(是兩異面直線,其公垂向量為,分別是上任一點,為間的距離).③.直線與平面所成角(為平面的法向量).④.利用法向量求二面角的平面角定理
2025-07-24 12:09
【總結(jié)】空間向量與立體幾何解答題精選1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標原點長為單位長度,如圖建立空間直角坐標系,則各點坐標為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在上取一點
2025-06-23 04:04