【總結(jié)】§向量的數(shù)量積一.問題情境:情境1:前面我們學(xué)習(xí)了平面向量的加法、減法和數(shù)乘三種運(yùn)算,那么向量與向量能否“相乘”呢??cos||||sFW???其中力和位移是向量,是與的夾角,而功W是數(shù)量.?F?s?s?F?情境2:一個物體在力F的作用下發(fā)生了
2024-11-18 07:35
【總結(jié)】精品資源第02講向量的數(shù)量積●知識梳理:(1)向量的夾角:如下圖,已知兩個非零向量a和b,作=a,=b,則∠AOB=θ(0°≤θ≤180°)叫做向量a與b的夾角,記作〈a,b〉.(2)數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積,記作a·b,即a·b=|a||b|co
2025-06-29 17:25
【總結(jié)】平面向量定義及線性運(yùn)算練習(xí)題一.選擇題1、下列說法正確的是(?。〢、數(shù)量可以比較大小,向量也可以比較大小.B、方向不同的向量不能比較大小,但同向的可以比較大小.C、、向量的模可以比較大小.2、給出下列六個命題:①兩個向量相等,則它們的起點(diǎn)相同,終點(diǎn)相同;②若,則;③若,則四邊形ABCD是平行四邊形;④平行四邊形ABCD中,一定有;⑤若,,則;⑥,,則.
2025-03-25 01:22
【總結(jié)】平面向量的數(shù)量積的性質(zhì)【問題導(dǎo)思】 已知兩個非零向量a,b,θ為a與b的夾角.·b=0,則a與b有什么關(guān)系?【提示】 a·b=0,a≠0,b≠0,∴cosθ=0,θ=90°,a⊥b.·a等于什么?【提示】 |a|·|a|cos0°=|a|2.(1)如果e是單位向量,則a·e=e·
2025-06-25 15:19
【總結(jié)】平面向量數(shù)量積說課稿 平面向量數(shù)量積說課稿1一、說教材 平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標(biāo)表示把向量之間的運(yùn)算轉(zhuǎn)化為數(shù)之間的運(yùn)算。本節(jié)內(nèi)容是在平面向量的坐標(biāo)表示以及平...
2024-12-04 22:04
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(3,1),b=(x,-3),且a⊥b,則實(shí)數(shù)x的值為()(A)-9(B)9(C)1(D)-12.(2021·遼寧高考)已知向量a=(2,1),b
2024-12-03 03:14
【總結(jié)】aABABaaABaAB平面向量空間向量具有大小和方向的量具有大小和方向的量幾何表示法幾何表示法字母表示法字母表示法向量的大小向量的大小長度為零的向量長度為零的向量模為1的向量模為1的向量長度相等且方向相反的向量長
2024-11-24 17:38
【總結(jié)】第一篇:平面向量的數(shù)量積教案 、模、夾角 教學(xué)目標(biāo): 1、知識目標(biāo):推導(dǎo)并掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會利用數(shù)量積求解向量的模、、能力目標(biāo):通過自主互助探究式學(xué)習(xí),培養(yǎng)學(xué)生的自學(xué)能力,啟發(fā)學(xué)...
2024-10-21 00:49
【總結(jié)】平面向量的數(shù)量積一、知識梳理:?1、平面向量的數(shù)量積?(1)a與b的夾角:?(2)向量夾角的范圍:?(3)向量垂直:[00,1800]abθ共同的起點(diǎn)aOABbθOABOABOABOAB
2024-11-10 03:15
【總結(jié)】空間向量與立體幾何單元檢測題一、選擇題:1、若,,是空間任意三個向量,,下列關(guān)系式中,不成立的是()A、B、C、D、2、已知向量=(1,1,0),則與共線的單位向量() A、(1,1,0) B、(0,1,0) C、(,,0)D、(1,1,1)3、若為任意
2025-01-15 05:33
【總結(jié)】說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時---平面向量數(shù)量積的物理背景及其含義。下面,我從背景分析、教學(xué)目標(biāo)設(shè)計、課堂結(jié)構(gòu)設(shè)計、教學(xué)過程設(shè)計、教學(xué)媒體設(shè)計及教學(xué)評價設(shè)計六個方面對本節(jié)課的思考進(jìn)行說明。一、背景分析1、學(xué)習(xí)任務(wù)分析平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個重要概念
2025-04-16 12:12
【總結(jié)】模塊4同步訓(xùn)練——平面向量的數(shù)量積一、知識回顧1.向量的夾角:已知兩個非零向量與b,作=,=b,則∠AOB=()叫做向量與b的夾角。2.兩個向量的數(shù)量積:已知兩個非零向量與b,它們的夾角為,則·b=︱︱·︱b︱cos.其中︱b︱cos稱為向量b在方向上的投影.3.向量的數(shù)量積的性質(zhì):若=(),b=()則e·=·e=︱︱c
2025-07-07 14:56
【總結(jié)】平面向量基本定理及坐標(biāo)運(yùn)算1.選擇題1.若向量=(1,2),=(3,4),則=()A(4,6)B(-4,-6)C(-2,-2)D(2,2)2.若向量a=(x-2,3)與向量b=(1,y+2)相等,則 ()A.x=1,y=3 B.x=3,y=1 C.x=1,y=-5 D.x=5,y=-13.下列
【總結(jié)】《平面向量數(shù)量積的物理背景及其含義》教學(xué)目標(biāo)?;?;?;?.?教學(xué)重點(diǎn):平面向量的數(shù)量積定義?教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用問題1:我們研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?一探究?問題2:我們是怎
2024-11-23 11:29
【總結(jié)】復(fù)習(xí)例題講解小結(jié)回顧引入新課講解性質(zhì)講解課堂練習(xí)一般地,實(shí)數(shù)λ與向量a的積是一個向量,記作λa,它的長度和方向規(guī)定如下:(1)|λa|=|λ||a|(2)當(dāng)λ0時,λa的方向與a方向相同;當(dāng)λ0時,λa
2024-10-19 17:18