【總結(jié)】樂學(xué)在線課程:咨詢電話:400-811-66881二次函數(shù)中的存在性問題(講義)一、知識點(diǎn)睛解決“二次函數(shù)中存在性問題”的基本步驟:①____________.研究確定圖形,先畫圖解決其中一種情形.②①的結(jié)果是否合理,再找其他分類,類比
2025-01-10 14:34
【總結(jié)】高考熱點(diǎn)問題與解題策略-----------------------作者:-----------------------日期:第三章高考熱點(diǎn)問題和解題策略數(shù)學(xué)高考堅持以“兩個有利”(有利高校選拔新生、有利中學(xué)教學(xué))為指導(dǎo)思想,嚴(yán)格遵循“考試說明”的規(guī)定,內(nèi)容上不超綱,能力上不超規(guī)定層次(了解、理解和掌握、靈活和綜合運(yùn)用),在
2025-05-03 00:37
【總結(jié)】導(dǎo)數(shù)恒成立中問題中的整數(shù)問題導(dǎo)數(shù)為我們解決有關(guān)函數(shù)問題提供了一般性方法,是解決實(shí)際問題強(qiáng)有力的工具.與初等數(shù)學(xué)方法比較,利用導(dǎo)數(shù)研究函數(shù)性質(zhì)具有簡捷性、有效性和一般性的特點(diǎn).以函數(shù)為載體,以導(dǎo)數(shù)為工具,考查函數(shù)圖象、極(最)值、單調(diào)性及其應(yīng)用為目標(biāo),是最近幾年函數(shù)、導(dǎo)數(shù)及不等式交匯試題的顯著特點(diǎn)和命題趨向. 導(dǎo)數(shù)問題靈活多變,經(jīng)常在與函數(shù)、不等式以及數(shù)列等知識的交匯處命題,綜合程
2025-03-25 05:32
【總結(jié)】專題——求參數(shù)取值范圍一般方法概念與用法恒成立問題是數(shù)學(xué)中常見問題,也是歷年高考的一個熱點(diǎn)。題型特點(diǎn)大多以已知一個變量的取值范圍,求另一個變量的取值范圍的形式出現(xiàn)。這樣的題型會出現(xiàn)于代數(shù)中的不等式里也會出現(xiàn)在幾何里。就??碱}型的一般題型以及解題方法,我在這里做了個小結(jié)。題型以及解題方法一,分離參數(shù)在給出的不等式中,如果能通過恒等變形分離出參數(shù),即:若恒成立,只須求出,
2025-03-24 23:27
【總結(jié)】......恒成立、能成立問題專題一、基礎(chǔ)理論回顧1、恒成立問題的轉(zhuǎn)化:恒成立;2、能成立問題的轉(zhuǎn)化:能成立;3、恰成立問題的轉(zhuǎn)化:在M上恰成立的解集為M另一轉(zhuǎn)化方法:若在D上恰成立,等價于在D上的最小值,若
2025-06-18 22:01
【總結(jié)】精品資源不等式恒成立問題一、知識梳理:不等式與函數(shù)、數(shù)列有關(guān)恒成立的綜合運(yùn)用二、訓(xùn)練反饋:1.若關(guān)于x的不等式在R上恒成立,則a的最大值是()A.0B.0C.-1D.22.不等式恒成立,則的取值范圍是。3.不等式對于滿足的一切實(shí)
2025-03-24 05:47
【總結(jié)】987654321-1-2-3-4-5-6-7-8-14-12-10-8-6-4-22468101214987654321-1-2-3-4-5-6-7-8-14-12-10-8-6-4-2246810121
2025-01-09 19:58
【總結(jié)】規(guī)?;瘑栴}的解題策略長沙市一中●謝婧規(guī)?;瘑栴}的解題策略湖南省長沙市第一中學(xué)謝婧【關(guān)鍵字】規(guī)?;呗运惴ā菊繂栴}規(guī)?;墙鼇硇畔W(xué)競賽的一個新趨勢,它意在通過擴(kuò)大數(shù)據(jù)量來增加算法設(shè)計和編程實(shí)現(xiàn)的難度,這就向信息學(xué)競賽的
2025-06-07 22:16
【總結(jié)】不等式恒成立、能成立、恰成立問題分析一、不等式恒成立問題問題引入:已知不等式對恒成立,其中,求實(shí)數(shù)的取值范圍。分析:思路(1)通過化歸最值,直接求函數(shù)的最小值解決,即。思路(2)通過分離變量,轉(zhuǎn)化到解決,即。思路(3)通過數(shù)形結(jié)合,化歸到作圖解決,即圖像在的上方。小結(jié):不等式恒成立問題的處理方法1、轉(zhuǎn)換求函數(shù)的最值:(1)若不等式在區(qū)間D上恒成立,則等價于
【總結(jié)】........已知,拋物線交軸于點(diǎn)A、B,交軸于點(diǎn)C.1、線段最值①線段和最小點(diǎn)P是拋物線對稱軸上一動點(diǎn),當(dāng)點(diǎn)P坐標(biāo)為多少時,PA+PC值最小.②線段差最大點(diǎn)Q是拋物線對稱軸上一動點(diǎn),當(dāng)點(diǎn)Q坐標(biāo)為多少時,|QA-QC|值最大
2025-03-24 06:25
【總結(jié)】f愛因斯坦卷積流形的不存在性問題阮其華3,黃琴(莆田學(xué)院數(shù)學(xué)系,福建莆田351100)摘要:討論了帶有完備非緊基流形且Ricci平坦的愛因斯坦卷積流形的存在性問題.證明了若基流形上總數(shù)量曲率非正或卷積函數(shù)有界,且
2025-01-08 23:23
【總結(jié)】姓名;類型一:反比例函數(shù)中等腰三角形找點(diǎn)問題1、如圖,已知反比例函數(shù)(k<0)的圖象經(jīng)過點(diǎn)A(—,m)點(diǎn)A作AB⊥x軸于點(diǎn)B,且△AOB的面積為.(1)求k和m的值;(2)若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求|AO|:|AC|的值;(3)若D為坐標(biāo)軸上一點(diǎn),使△AOD是以AO為一腰的等腰三角形,請寫出所有滿足條件的D點(diǎn)的坐標(biāo).
2025-03-24 23:29
【總結(jié)】淺析原函數(shù)存在性問題摘要在微積分學(xué)中,—萊布尼茲公式將定積分的計算問題轉(zhuǎn)化為求原函數(shù)的問題,因此,;其次得出了原函數(shù)存在的條件;再次從原函數(shù)與定積分的聯(lián)系、三類可積函數(shù)的原函數(shù)存在性問題、原函數(shù)存在時函數(shù)的可積性問題三方面闡述了函數(shù)的可積性與原函數(shù)的存在性是相互獨(dú)立形成的概念,.關(guān)鍵詞原函數(shù)定積分微積分基本定理間斷點(diǎn)
2025-08-07 10:41
【總結(jié)】......二次函數(shù)恒成立問題2016年8月東莞莞美學(xué)校一、恒成立問題的基本類型:類型1:設(shè),(1)上恒成立;(2)上恒成立。類型2:設(shè)(1)當(dāng)時,上恒成立,上恒成立(2)當(dāng)時,上恒成立上
2025-03-24 06:26
【總結(jié)】......不等式恒成立、能成立、恰成立問題分析一、不等式恒成立問題問題引入:已知不等式對恒成立,其中,求實(shí)數(shù)的取值范圍。分析:思路(1)通過化歸最值,直接求函數(shù)的最小值解決,即。思路(2)通過分離變量,轉(zhuǎn)化