【總結(jié)】高中數(shù)學(xué)必修2立體幾何測試題及答案(一)一,選擇(共80分,每小題4分)1,三個平面可將空間分成n個部分,n的取值為()A,4;B,4,6;C,4,6,7;D,4,6,7,8。2,兩條不相交的空間直線a、b,必存在平面α,使得()A,aα、bα;B,aα、b∥α;C,a⊥α、b⊥α;D,aα、b⊥α。3,若p是兩條異面直線a、b外的任意一點,則()A,過點
2025-06-18 14:12
【總結(jié)】立體幾何二一、選擇題:1.下列命題中,正確的是 A.經(jīng)過不同的三點有且只有一個平面 B.分別在兩個平面內(nèi)的兩條直線一定是異面直線 C.垂直于同一個平面的兩條直線是平行直線 D.垂直于同一個平面的兩個平面平行2.給出四個命題:①線段AB在平面內(nèi),則直線AB不在內(nèi);②兩平面有一個公共點,則一定有無數(shù)個公共點;③三條平行直線共面;④有三個公共點的兩平
2025-03-25 06:43
【總結(jié)】立體幾何二面角,在長方體1111CDCD?????中,11???,D2????,?、F分別是??、C?的中點.證明1、1C、F、?四點共面,并求直線1CD與平面11CF??所成的角的大小.2.如題(19)圖,三棱錐PABC?中,
2024-11-24 15:52
【總結(jié)】第二章《解析幾何初步》檢測試題一、選擇題(本大題共12小題,每小題5分,共60分)1.過點(1,0)且與直線x-2y-2=0平行的直線方程是()=0+1=0+y-2=0+2y-1=02.已知直線mx+ny+1=0平行于直線4x+3y+5=0,且在y軸上的截距為,則m,n的值分別為(
2025-03-25 02:03
【總結(jié)】立體幾何知識點一、空間幾何體:由若干個多邊形圍成的幾何體,叫做多面體。圍成多面體的各個多邊形叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做多面體的頂點.:有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都平行,由這些面所圍成的多面體叫做棱柱。兩個互相平行的面叫做底面,其余各面叫做側(cè)面.:有一個面是多邊形,其余各面都是有一個公共頂點的三角形
2025-06-19 17:02
【總結(jié)】必修二立體幾何經(jīng)典證明試題1.如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(I)證明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.CBADC1A11.【解析】(Ⅰ)由題設(shè)知BC⊥,BC⊥AC,,∴面,又∵面,∴,由題設(shè)知,∴=,即
【總結(jié)】立體幾何一、選擇、填空題1、如圖所示是一個幾何體的三視圖,則這個幾何體外接球的表面積為A.87B.16C.32D.642、如圖,在正四棱柱中,,點是平面內(nèi)的一個動點,則三棱錐的正視圖與俯視圖的面積之比的最大值為()A.1B.2
2025-03-25 06:44
【總結(jié)】空間幾何體空間幾何體的結(jié)構(gòu)柱、錐、臺、球的結(jié)構(gòu)特征簡單幾何體的結(jié)構(gòu)特征三視圖柱、錐、臺、球的三視圖簡單幾何體的三視圖直觀圖斜二測畫法平面圖形空間幾何體中心投影柱、錐、臺、球的表面積與體積平行投影畫圖識圖柱錐臺球圓錐圓臺
2025-01-14 00:38
【總結(jié)】網(wǎng)遲來的豆客高中數(shù)學(xué)必修2立體幾何知識點總結(jié)+各章節(jié)練習(xí)題+期末測試題全套【人教版,蘇科版】不在同一平面內(nèi)的若干線段首尾相接所成的圖形叫做空間折線.若空間折線的最后一條線段的尾端與最初一條線段的首端重合,則叫做封閉的空間折線.若封閉的空間折線各線段彼此不相交,則叫做這空間多邊形平面,平面是一個不定義的概念,幾何里的平
2024-12-17 15:19
【總結(jié)】2015年高考立體幾何大題試卷1.【2015高考新課標(biāo)2,理19】如圖,長方體中,,,,點,分別在,上,.過點,的平面與此長方體的面相交,交線圍成一個正方形.DD1C1A1EFABCB1(1題圖)(Ⅰ)在圖中畫出這個正方形(不必說出畫法和理由);(Ⅱ)求直線與平面所成角的正弦值.2.【2015江蘇高考,16】如圖,在直三棱柱
2025-04-17 00:05
【總結(jié)】高考模擬試題分類解析—立體幾何1.(2007年安徽宿州第二次質(zhì)量檢測文9)設(shè)l,m,n表示三條直線,表示三個平面,①若m,n是l在內(nèi)的射影,m⊥l,則m⊥n②若m⊥,n∥且∥,則m⊥n③若⊥,⊥,則∥④若l⊥,m⊥則l∥m其中正確命題的個數(shù)是
2025-01-14 15:14
【總結(jié)】立體幾何大題題型二:翻折問題,,是的中點,將△沿著翻折成△,使面面,分別為的中點.(1)求三棱錐的體積;(2)證明:平面;(3)證明:平面平面.思路分析:對于翻折問題要注意翻折后的圖形與翻折前的圖形中的變與不變量.(1)求棱錐的體積一般找棱錐高易求的進行轉(zhuǎn)換.由題意知,且,∴四邊形為平行四邊形,∴,即為等邊三角形.由面面的性質(zhì)定理,連結(jié),則,可知平面.所以即可;(2)本題
2025-07-24 12:06
【總結(jié)】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【總結(jié)】立體幾何測試題(滿分100分)一、選擇題(每小題4分,共40分)1、線段AB在平面?內(nèi),則直線AB與平面?的位置關(guān)系是A、AB??B、AB??C、由線段AB的長短而定D、以上都不對2、下列說法正確的是A、三點確定一個平面B、四邊形一定是平面
2024-11-11 07:45
【總結(jié)】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19