【總結(jié)】第一篇:立體幾何證明問(wèn)題 證明問(wèn)題 ,E、F分別是長(zhǎng)方體邊形 .-的棱A、C的中點(diǎn),求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過(guò)點(diǎn)A且垂直于SC的平面分別交SB、SC、SD...
2024-10-14 10:12
【總結(jié)】立體幾何??甲C明題匯總考點(diǎn):線面垂直,面面垂直的判定2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;(2)平面平面??键c(diǎn):線面平行的判定A1ED1C1B1DCBA3、如圖,在正方體中,是的中點(diǎn),求證:平面??键c(diǎn):線面垂直的判定4、已知中,面,,求證:面.
2025-03-25 06:44
【總結(jié)】第一篇:初二幾何證明題 1如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于F,且AF=DCCF.(1)求證:D是BC的中點(diǎn);(2)如果AB=ACADCF的...
2024-10-21 22:41
【總結(jié)】立體幾何證明平行專題訓(xùn)練命題:***1.如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)2、如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過(guò)A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點(diǎn),現(xiàn)將△ADE沿AE折疊,使得D
【總結(jié)】1DA1B1BAC1CD12022年高一數(shù)學(xué)必修二立體幾何測(cè)試題一:選擇題(4分題)10?,能確定一個(gè)平面的條件是()A.空間任意三點(diǎn)2.,,是空間三條不同的直線,則下列命題正確的是().1l23lA.,B.,?23l13/l?12l?3/l?13l?C.,,共面D.,,共點(diǎn),
2025-03-25 02:03
【總結(jié)】1.(本題10分)如圖,已知:ABCD中,的平分線交邊于,的平分線交于,交于.求證:.ABCDEFG2.在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.(1)求證:△BEC≌△DEC;AFDEBC(2)延長(zhǎng)BE交AD于F,當(dāng)∠BED=120°時(shí),
2025-04-04 03:51
【總結(jié)】專業(yè)資料分享、F、G、H,則四面體EFGH的表面積與四面體ABCD的表面積的比值是( ?。〢)B)C)D)如圖,連接AF、AG并延長(zhǎng)與BC、CD相交于M、N,由于F、G分別是三角形的重心,
【總結(jié)】中考數(shù)學(xué)經(jīng)典幾何證明題(一)1.(1)如圖1所示,在四邊形中,=,與相交于點(diǎn),分別是的中點(diǎn),聯(lián)結(jié),分別交、于點(diǎn),試判斷的形狀,并加以證明;(2)如圖2,在四邊形中,若,分別是的中點(diǎn),聯(lián)結(jié)FE并延長(zhǎng),分別與的延長(zhǎng)線交于點(diǎn),請(qǐng)?jiān)趫D2中畫(huà)圖并觀察,圖中是否有相等的角,若有,請(qǐng)直接寫(xiě)出結(jié)論:;(3)如圖3,在中,,點(diǎn)在上,,分別是的中點(diǎn),聯(lián)結(jié)并延長(zhǎng),與
2025-04-04 03:01
【總結(jié)】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉(zhuǎn)化與聯(lián)系: 應(yīng)用判定定理時(shí),注意由“低維”到“高維”:“線線...
2024-11-15 05:58
【總結(jié)】第一篇:幾何證明題 幾何證明題集(七年級(jí)下冊(cè)) 姓名:_________班級(jí):_______ 一、互補(bǔ)”。 E D 二、證明下列各題: 1、如圖,已知∠1=∠2,∠3=∠D,求證:DB/...
2024-10-27 12:50
【總結(jié)】第一篇:立體幾何垂直證明范文 立體幾何專題----垂直證明 學(xué)習(xí)內(nèi)容:線面垂直面面垂直 立體幾何中證明線面垂直或面面垂直都可轉(zhuǎn)化為線線垂直,而證明線線垂直一般有以下的一些方法:(1)通過(guò)“平移”...
2024-10-14 07:25
【總結(jié)】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED并延長(zhǎng)分別交AD、AB于F、G(1)求證:EF=EG;(2)當(dāng)∠BED=120°時(shí),求∠EFD的度數(shù).AFDEBC2、已知:如圖,在正方形ABCD中,點(diǎn)E、F分別在BC和CD上,AE=AF.(
2025-03-24 12:13
【總結(jié)】幾何證明◆典例精析【例題1】(天津)已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖①,若半徑為r1的⊙O1是Rt△ABC的內(nèi)切圓,求r1;(2)如圖②,若半徑為r2的兩個(gè)等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2;(3)如圖③,當(dāng)n是大于2的正整數(shù)時(shí),若半徑為rn的n個(gè)等
2025-03-24 06:14
【總結(jié)】第一篇:立體幾何證明格式示范 教材P58練習(xí)2答案:(注意規(guī)范格式) 證明:連接B1D1 üüM,N分別是A1B1和A1D1中點(diǎn)TMN是DA1B1D1中位線TMN//B1D1üTMN//EF?y...
2024-10-14 07:24
【總結(jié)】第一篇:立體幾何證明已經(jīng)修改 F 1、如圖,在五面體ABCDEF中,F(xiàn)A^平面 DABC,DA//DB//C AF=AB=BC=FE=F^,EAB為,ECAD的M中點(diǎn),1AD2(1)求異面直線...
2024-10-14 08:53