【總結(jié)】???
2025-06-21 23:02
【總結(jié)】第六章常微分方程—不定積分問(wèn)題—微分方程問(wèn)題推廣微分方程的基本概念一階微分方程二階微分方程用Matlab軟件解二階常系數(shù)非齊次微分方程微分方程的基本概念微分方程的基本概念引例幾何問(wèn)題物理問(wèn)題解:設(shè)所求曲線(xiàn)方程為y=y(x),則有如下關(guān)系式:
2025-04-29 01:07
【總結(jié)】常微分方程試題庫(kù)(一)、填空題(每空3分)1、當(dāng)_______________時(shí),方程0),(),(??dyyxNdxyxM稱(chēng)為恰當(dāng)方程,或稱(chēng)全微分方程,其原函數(shù)為:。2、形如________________的方程,稱(chēng)為齊次方程。3、求),(yxfdxdy?滿(mǎn)足00)(
2025-01-10 04:05
【總結(jié)】4.給定一階微分方程,(1).求出它的通解;(2).求通過(guò)點(diǎn)的特解;(3).求出與直線(xiàn)相切的解;(4).求出滿(mǎn)足條件的解;(5).繪出(2),(3),(4)中的解得圖形。解:(1).通解顯然為;(2).把代入得,故通過(guò)點(diǎn)的特解為;(3).因?yàn)樗笾本€(xiàn)與直線(xiàn)相切,所以只有唯一解,即只有唯一實(shí)根,從而,故與直線(xiàn)相切的解是;(4).把代入即得
2025-06-24 15:00
【總結(jié)】常微分方程的基本概念可分離變量的微分方程一階微分方程與可降階的高階微分方程二階常系數(shù)微分方程常微分方程的應(yīng)用舉例第9章常微分方程結(jié)束前頁(yè)結(jié)束后頁(yè)含有未知函數(shù)的導(dǎo)數(shù)(或微分)的方程稱(chēng)為微分方程。定義一常微分方程的基
2025-01-19 07:39
【總結(jié)】第九章常微分方程的數(shù)值解法 在自然科學(xué)的許多領(lǐng)域中,都會(huì)遇到常微分方程的求解問(wèn)題。然而,我們知道,只有少數(shù)十分簡(jiǎn)單的微分方程能夠用初等方法求得它們的解,多數(shù)情形只能利用近似方法求解。在常微分方程課中已經(jīng)講過(guò)的級(jí)數(shù)解法,逐步逼近法等就是近似解法。這些方法可以給出解的近似表達(dá)式,通常稱(chēng)為近似解析方法。還有一類(lèi)近似方法稱(chēng)為數(shù)值方法,它可以給出解在一些離散點(diǎn)上的近似值。利用計(jì)算機(jī)解微分方程主要
2024-08-31 20:43
【總結(jié)】常微分方程試卷B卷一、填空題1、二階常系數(shù)非齊次線(xiàn)性微分方程的通解等于其對(duì)應(yīng)的的通解再加上的一個(gè)特解2、是階微分方程。3、微分方程是(類(lèi)型)微分方程。4、微分方程的通解為。5、一曲線(xiàn)經(jīng)過(guò)原點(diǎn),且曲線(xiàn)上
2024-10-04 15:11
【總結(jié)】常微分方程一、填空題1.微分方程的階數(shù)是____________答:12.若和在矩形區(qū)域內(nèi)是的連續(xù)函數(shù),且有連續(xù)的一階偏導(dǎo)數(shù),則方程有只與有關(guān)的積分因子的充要條件是_________________________答:3._________________________________________稱(chēng)為齊次方程.答:形如的方程4.如
2025-03-25 01:12
【總結(jié)】218.111.1常微分方程教學(xué)大綱(OrdinaryDifferentialEquations)學(xué)分?jǐn)?shù)3周學(xué)時(shí)3+1:常微分方程(一學(xué)期課程)一學(xué)期:4*18.:(1)課
【總結(jié)】2.求解下列常系數(shù)線(xiàn)性微分方程:(1)解:特征方程:特征根:基本解組:所求通解:(2)解:特征方程:特征根:基本解組:所求通解:(3)解:特征方程:特征根:基本解組:所求通解:(4)解:特征方程:特征根:基本解組:所求通解:(5)(屬于類(lèi)型Ⅰ)解:齊次方程:特征方程:
2025-06-26 20:31
【總結(jié)】第十章常微分方程與差分方程嘉興學(xué)院17February2022第1頁(yè)差分方程第十章常微分方程與差分方程嘉興學(xué)院17February2022第2頁(yè)差分的概念及性質(zhì).Δ,)1()()1()0(:).(111210xxxxxxxyyyyy
2025-01-20 04:56
【總結(jié)】1第三章二階及高階微分方程可降階的高階方程線(xiàn)性齊次常系數(shù)方程線(xiàn)性非齊次常系數(shù)方程的待定系數(shù)法高階微分方程的應(yīng)用線(xiàn)性微分方程的基本理論2前一章介紹了一些一階微分方程的解法,在實(shí)際的應(yīng)用中,還會(huì)遇到高階的微分方程,在這一章,我們討論二階及二階以上的微分方程,即高階微分方程的
2025-04-29 06:42
【總結(jié)】331§9.4二階常系數(shù)線(xiàn)性微分方程二階常系數(shù)線(xiàn)性微分方程的一般形式為)(xfqyypy??????其中qp和是實(shí)常數(shù),)(xf是已知函數(shù)。當(dāng)0)(?xf時(shí),形式為0??????qyypy稱(chēng)為二階常系數(shù)線(xiàn)性齊次微分方程。例如034??????yy如果
【總結(jié)】江蘇師范大學(xué)數(shù)學(xué)教育專(zhuān)業(yè)《常微分方程》練習(xí)測(cè)試題庫(kù)參考答案一、判斷說(shuō)明題1、在線(xiàn)性齊次方程通解公式中C是任意常數(shù)而在常數(shù)變易法中C(x)是x的可微函數(shù)。將任意常數(shù)C變成可微函數(shù)C(x),期望它解決線(xiàn)性非齊次方程求解問(wèn)題,這一方法成功了,稱(chēng)為常數(shù)變易法。2、因p(x)連續(xù),y(x)=yexp(-)在p(x)連續(xù)的區(qū)間有意義,而exp(-)>0。如果y=0,推出y(x)=0,如果y
【總結(jié)】微分方程習(xí)題§1基本概念1.驗(yàn)證下列各題所給出的隱函數(shù)是微分方程的解.(1)(2)2..已知曲線(xiàn)族,求它相應(yīng)的微分方程(其中均為常數(shù))(一般方法:對(duì)曲線(xiàn)簇方程求導(dǎo),然后消去常數(shù),方程中常數(shù)個(gè)數(shù)決定求導(dǎo)次
2025-06-24 23:00